This work reports on Fe2O3 and ZnO materials for lactate quantification. In the synthesis, the bi-phase γ-/α-Fe2O3 and γ-/α-Fe2O3/ZnO nanoparticles (NPs) were obtained for their application in a lactate colorimetric sensor. The crystalline phases of the NPs were analyzed by XRD and XPS techniques. S/TEM images showed spheres with an 18 nm average and a needle length from 125 to 330 nm and 18 nm in diameter. The γ-/α-Fe2O3 and γ-/α-Fe2O3/ZnO were used to evaluate the catalytic activity of peroxidase with the substrate 3,3,5,5-tetramethylbenzidine (TMB), obtaining a linear range of 50 to 1000 μM for both NPs, and a 4.3 μM and 9.4 μM limit of detection (LOD), respectively. Moreover, γ-/α-Fe2O3 and γ-/α-Fe2O3/ZnO/lactate oxidase with TMB assays in the presence of lactate showed a linear range of 50 to 1000 µM, and both NPs proved to be highly selective in the presence of interferents. Finally, a sample of human serum was also tested, and the results were compared with a commercial lactometer. The use of ZnO with Fe2O3 achieved a greater response toward lactate oxidation reaction, and has implementation in a lactate colorimetric sensor using materials that are economically accessible and easy to synthesize.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.