A portable instrument, based on laser-induced breakdown spectroscopy (LIBS), has been developed for the detection of metal contaminants on surfaces. The instrument has a weight of 14.6 kg, fits completely into a small suitcase (46 × 33 × 24 cm), and operates from 115 V ac. The instrument consists of a sampling probe connected to the main analysis unit by electrical and optical cabling. The hand-held probe contains a small laser to generate laser sparks on a surface and a fiber-optic cable to collect the spark light. The collected light is spectrally resolved and detected with the use of a compact spectrograph/CCD detector system. The instrument has been evaluated for the analysis of metals in the environment: Ba, Be, Pb, and Sr in soils; Pb in paint; and Be and Pb particles collected on filters. Detection limits in ppm for metals in soils were 265 (Ba), 9.3 (Be), 298 (Pb), and 42 (Sr). The detection limit for Pb in paint was 0.8% (8000 ppm), corresponding to 0.052 mg/cm2. The higher limit obtained for Pb in paint is attributed to the use of the 220.35-nm Pb(II) line instead of the stronger 405.78-nm Pb(I) line used for soils. Spectral interferences prevented use of the 405.78-nm line to determine Pb in paint. The surface detection limit for Be particles on filters was dependent on particle size and ranged from 21 to 63 ng/cm2. The detection limit for Pb particles on filters was 5.6 μg/cm2.
Laser-induced breakdown spectroscopy (LIBS) measurements are typically carried out using pulses (<20 ns, >50 mJ) from a flashlamp-pumped electro-optically Q-switched Nd:YAG laser (EO-laser) or excimer laser. Here we report LIBS analyses of solids using an acousto-optically Q-switched Nd:YAG laser (AO-laser) producing 150 ns pulses of lower energy (10 mJ) at repetition rates up to 6 kHz. The high repetition rate allows increased spatial or depth sampling over a given time period compared to the EO-laser. Results of AO-laser based LIBS analysis of (1) steels, (2) soils, and (3) surface stains and dusts are described. Detection limits for Cr, Cu, Mn, Ni, and Si in steel ranged from 0.11 to 0.24% using a commercial polychromator-based detection system with limits 4--30 times lower achieved using a laboratory-based detection system. The minimum detectable masses of Ba, Cr, Mn, and Sr on a metal surface were estimated with 1.2 pg/shot achieved for Sr. Detection limits for Ba and Sr in soil were 296 and 52 ppm, respectively. The temperatures, spectra, and emission decay curves from plasmas generated by the AO- and EO-lasers are compared and some characteristics of particles ablated by the AO-laser are described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.