The HOPE mass spectrometer of the Radiation Belt Storm Probes (RBSP) mission (renamed the Van Allen Probes) is designed to measure the in situ plasma ion and electron fluxes over 4π sr at each RBSP spacecraft within the terrestrial radiation belts. The scientific goal is to understand the underlying physical processes that govern the radiation belt structure and dynamics. Spectral measurements for both ions and electrons are acquired over 1 eV to 50 keV in 36 log-spaced steps at an energy resolution E FWHM /E ≈ 15 %. The dominant ion species (H + , He + , and O + ) of the magnetosphere are identified using foil-based time-of-flight (TOF) mass spectrometry with channel electron multiplier (CEM) detectors. Angular measurements are derived using five polar pixels coplanar with the spacecraft spin axis, and up to 16 azimuthal bins are acquired for each polar pixel over time as the spacecraft spins. Ion and electron measurements are acquired on alternate spacecraft spins. HOPE incorporates several new methods to minimize and monitor the background induced by penetrating particles in the harsh environment of the radiation belts. The absolute efficiencies of detection are continuously monitored, enabling precise, quantitative measurements of electron and ion fluxes and ion species abundances throughout the mission. We describe
The HOPE mass spectrometer of the Radiation Belt Storm Probes (RBSP) mission (renamed the Van Allen Probes) is designed to measure the in situ plasma ion and electron fluxes over 4π sr at each RBSP spacecraft within the terrestrial radiation belts. The scientific goal is to understand the underlying physical processes that govern the radiation belt structure and dynamics. Spectral measurements for both ions and electrons are acquired over 1 eV to 50 keV in 36 log-spaced steps at an energy resolution E FWHM /E ≈ 15 %. The dominant ion species (H + , He + , and O + ) of the magnetosphere are identified using foil-based time-of-flight (TOF) mass spectrometry with channel electron multiplier (CEM) detectors. Angular measurements are derived using five polar pixels coplanar with the spacecraft spin axis, and up to 16 azimuthal bins are acquired for each polar pixel over time as the spacecraft spins. Ion and electron measurements are acquired on alternate spacecraft spins. HOPE incorporates several new methods to minimize and monitor the background induced by penetrating particles in the harsh environment of the radiation belts. The absolute efficiencies of detection are continuously monitored, enabling precise, quantitative measurements of electron and ion fluxes and ion species abundances throughout the mission. We describe the engineering approaches for plasma measurements in the radiation belts and present summaries of HOPE measurement strategy and performance.
Early in the next century, several space missions are planned with the goal of landing craft on asteroids, comets, the Moon, and Mars. To increase the scientific return of these missions, new methods are needed to provide (1) significantly more analyses per mission lifetime, and (2) expanded analytical capabilities. One method that has the potential to meet both of these needs for the elemental analysis of geological samples is laser-induced breakdown spectroscopy (LIBS). These capabilities are possible because the laser plasma provides rapid analysis and the laser pulse can be focused on a remotely located sample to perform a stand-off measurement. Stand-off is defined as a distance up to 20 m between the target and laser. Here we present the results of a characterization of LIBS for the stand-off analysis of soils at reduced air pressures and in a simulated Martian atmosphere (5–7 torr pressure of CO2) showing the feasibility of LIBS for space exploration. For example, it is demonstrated that an analytically useful laser plasma can be generated at distances up to 19 m by using only 35 mJ/pulse from a compact laser. Some characteristics of the laser plasma at reduced pressure were also investigated. Temporally and spectrally resolved imaging showed significant changes in the plasma as the pressure was reduced and also showed that the analyte signals and mass ablated from a target were strongly dependent on pressure. As the pressure decreased from 590 torr to the 40–100 torr range, the signals increased by a factor of about 3–4, and as the pressure was further reduced the signals decreased. This behavior can be explained by pressure-dependent changes in the mass of material vaporized and the frequency of collisions between species in the plasma. Changes in the temperature and the electron density of the plasmas with pressure were also examined and detection limits for selected elements were determined.
With the use of laser-induced breakdown spectroscopy (LIBS), the effects of chemical speciation and matrix composition on Pb and Ba measurements have been investigated by using sand and soil matrices. A cylindrical lens was used to focus the laser pulses on the samples because it yielded higher measurement precision than a spherical lens for the experimental conditions used here. The detection limits for Pb and Ba spiked in a sand matrix were 17 and 76 ppm (w/w), respectively. In spiked soil, the detection limits were 57 and 42 ppm (w/w) for Pb and Ba, respectively. Measurement precision for five replicate measurements was typically 10% RSD or less. Two factors were found to influence emissions from Pb and Ba present in sand and soil matrices as crystalline compounds: (1) compound speciation, where Ba emission intensities varied in the order carbonate > oxide > sulfate > chloride > nitrate, and where Pb emission intensities varied in the order oxide > carbonate > chloride > sulfate > nitrate; and (2) the composition of the bulk sample matrix. Emissions from Ba(II) correlated inversely with the plasma electron density, which in turn was dependent upon the percent sand in a sand/soil mixture. The analytical results obtained here show that a field-screening instrument based on LIBS would be useful for the initial screening of soils contaminated with Pb and Ba.
A portable instrument, based on laser-induced breakdown spectroscopy (LIBS), has been developed for the detection of metal contaminants on surfaces. The instrument has a weight of 14.6 kg, fits completely into a small suitcase (46 × 33 × 24 cm), and operates from 115 V ac. The instrument consists of a sampling probe connected to the main analysis unit by electrical and optical cabling. The hand-held probe contains a small laser to generate laser sparks on a surface and a fiber-optic cable to collect the spark light. The collected light is spectrally resolved and detected with the use of a compact spectrograph/CCD detector system. The instrument has been evaluated for the analysis of metals in the environment: Ba, Be, Pb, and Sr in soils; Pb in paint; and Be and Pb particles collected on filters. Detection limits in ppm for metals in soils were 265 (Ba), 9.3 (Be), 298 (Pb), and 42 (Sr). The detection limit for Pb in paint was 0.8% (8000 ppm), corresponding to 0.052 mg/cm2. The higher limit obtained for Pb in paint is attributed to the use of the 220.35-nm Pb(II) line instead of the stronger 405.78-nm Pb(I) line used for soils. Spectral interferences prevented use of the 405.78-nm line to determine Pb in paint. The surface detection limit for Be particles on filters was dependent on particle size and ranged from 21 to 63 ng/cm2. The detection limit for Pb particles on filters was 5.6 μg/cm2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.