The aim of Solarforce is the achievement of high efficiency solar cells made out of ≤100 µm thick multicrystalline silicon wafers produced by the Ribbon on Sacrificial Template (RST) process. For a first evaluation of the RST material, solar cells were fabricated on p‐type RST wafers with different processes. The first conclusion is that the density of silicon carbide inclusions has to be lowered to obtain better FF values, and in turn a better homogeneity in cell performances. Secondly, conversion efficiency is found to be limited around 14% by low bulk minority carrier lifetime values, limiting both Voc and Leff. ICP‐MS analyses on RST material show that this lifetime may be improved with the possible achievement of low metallic impurity content in the wafers, under 1 ppb wt. Further enhancement is also shown to be possible with the n doping of RST material, a well controlled process in ribbon growth (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
In this work, we report for the first time on the solar cell fabrication on n-type silicon RST (for Ribbon on Sacrificial Template) using plasma immersion ion implantation. The experiments were also carried out on FZ silicon as a reference. Boron was implanted at energies from 10 to 15 kV and doses from 10 15 to 10 16 cm −2 , then activated by a thermal annealing in a conventional furnace at 900 and 950• C for 30 min. The n + region acting as a back surface field was achieved by phosphorus spin-coating. The frontside boron emitter was passivated either by applying a 10 nm deposited SiOX plasma-enhanced chemical vapor deposition (PECVD) or with a 10 nm grown thermal oxide. The anti-reflection coating layer formed a 60 nm thick SiNX layer. We show that energies less than 15 kV and doses around 5×10 15 cm −2 are appropriate to achieve open circuit voltage higher than 590 mV and efficiency around 16.7% on FZ-Si. The photovoltaic performances on ribbon silicon are so far limited by the bulk quality of the material and by the quality of the junction through the presence of silicon carbide precipitates at the surface. Nevertheless, we demonstrate that plasma immersion ion implantation is very promising for solar cell fabrication on ultrathin silicon wafers such as ribbons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.