Summary In this paper, the generalised conditional intensity measure (GCIM) method is extended to ground motion selection for scenario earthquake ruptures. The selection algorithm is based on generating random realisations of the considered intensity measure (IM) distributions for a specific rupture scenario and then finding the prospective ground motions that best fit the realisations using an optimal amplitude scale factor. Using different rupture scenarios and site conditions, two important aspects of the GCIM methodology are scrutinised: (i) different weight vectors for the various IMs considered and (ii) quantifying the importance of replicate selections for ensembles with different numbers of desired ground motions. It is demonstrated that considering only spectral acceleration (SA) ordinates in the selection process, as is common in many conventional selection procedures, may result in selected motions with a biased representation for duration and cumulative ground motion effects. In contrast, considering IMs other than SA ordinates (in particular, significant duration, cumulative absolute velocity, and Arias intensity) results in ensembles with an appropriate representation of these IMs, without a practically significant effect on SA ordinates. The benefit of conducting replicate selections to obtain a suite of motions with an improved representation for the distribution of the considered IMs is demonstrated, and a minimum number of replicates are suggested for different ground motion ensemble sizes. Copyright © 2015 John Wiley & Sons, Ltd.
SUMMARYIn this paper the effect of causal parameter bounds (e.g. magnitude, source-to-site distance, and site condition) on ground motion selection, based on probabilistic seismic hazard analysis (PSHA) results, is investigated. Despite the prevalent application of causal parameter bounds in ground motion selection, present literature on the topic is cast in the context of a scenario earthquake of interest, and thus specific bounds for use in ground motion selection based on PSHA, and the implications of such bounds, is yet to be examined. Thirty-six PSHA cases, which cover a wide range of causal rupture deaggregation distributions and site conditions, are considered to empirically investigate the effects of various causal parameter bounds on the characteristics of selected ground motions based on the generalized conditional intensity measure (GCIM) approach. It is demonstrated that the application of relatively 'wide' bounds on causal parameters effectively removes ground motions with drastically different characteristics with respect to the target seismic hazard and results in an improved representation of the target causal parameters. In contrast, the use of excessively 'narrow' bounds can lead to ground motion ensembles with a poor representation of the target intensity measure distributions, typically as a result of an insufficient number of prospective ground motions. Quantitative criteria for specifying bounds for general PSHA cases are provided, which are expected to be sufficient in the majority of problems encountered in ground motion selection for seismic demand analyses.
This paper focuses on the selection of ground motions for seismic response analysis in the near-fault region, where directivity effects are significant. An approach is presented to consider forward directivity velocity pulse effects in seismic hazard analysis without separate hazard calculations for ‘pulse-like’ and ‘non-pulse-like’ ground motions, resulting in a single target hazard (at the site of interest) for ground motion selection. The ability of ground motion selection methods to appropriately select records that exhibit pulse-like ground motions in the near-fault region is then examined. Applications for scenario and probabilistic seismic hazard analysis cases are examined through the computation of conditional seismic demand distributions and the seismic demand hazard. It is shown that ground motion selection based on an appropriate set of intensity measures (IMs) will lead to ground motion ensembles with an appropriate representation of the directivity-included target hazard in terms of IMs, which are themselves affected by directivity pulse effects. This alleviates the need to specify the proportion of pulse-like motions and their pulse periods a priori as strict criteria for ground motion selection.
This study investigates the correlation properties of integral ground-motion intensity measures (IMs) from Italian strong-motion records. The considered integral IMs include 5-95% significant duration, Housner intensity, cumulative absolute velocity, and Arias intensity. Both IM spatial correlation and the correlation between different integral and amplitude-based IMs (i.e., cross-IM correlation) are addressed in this study. To this aim, a new Italian ground-motion model (GMM) with spatial correlation for integral IMs is first introduced. Based on the newly developed GMM, the empirical correlation coefficients from interevent and intraevent residuals are investigated and various analytical correlation models between integral IMs and amplitude-based IMs are proposed. The effective range parameter representing spatial correlation properties and the trend in the cross-IM correlations are compared with existing models in the literature. The variability of the effective range parameters with respect to event-specific features is also discussed. Modeling groundmotion spatial and cross-IM correlations is an important step in seismic hazard and risk assessment of spatially distributed systems. Investigating regionspecific correlation properties based on Italian strong-motion records is of special interest as several correlation models have been developed based on global datasets, often lacking earthquakes in extensional regions such as Italy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.