Emissions from equipment leaks from process components, such as valves and flanges, were measured at 67 sites in the oil and natural gas production and gathering and boosting segments in four different onshore production basins in the western United States. Component counts were obtained from 65 of the 67 sites where nearly 84,000 monitored components resulted in a leak detection rate of 0.39% when detection results using both optical gas imaging (OGI) and a handheld flame ionization detector (FID) were combined. OGI techniques identified fewer leaks but greater total emissions than surveys using an FID operated in accordance with United States Environmental Protection Agency (EPA) Reference Method 21. Many of the leaks that were identified only with an FID were on the lower end of the emission rate distribution in this study. Conversely, OGI identified several components on the higher end of the study emission rate distribution that were not identified with FID-based methods. The most common EPA estimation method for greenhouse gas emission reporting for equipment leaks, which is based on major site equipment counts and population-average component emission factors, would have overestimated equipment leak emissions by 22% to 36% for the sites surveyed in this study as compared to direct measurements of leaking components because of a lower frequency of leaking components in this work than during the field surveys conducted more than 20 years ago to develop the current EPA factors. Results from this study further support emerging evidence that methane detection technologies for oil and gas applications should be evaluated on a different framework than a simple comparison of the counts of leaks detected.
Controlling fugitive emissions from leaks in petrochemical industry process equipment now requires periodic monitoring of valves, flanges, pumps etc., typically on a quarterly basis. Previous studies have shown that over
A cost-effective fugitive emission reduction program should focus on locating and repairing the very high leakers. Although these components (such as valves, pumps, compressors, flanges, etc.)
HSE Horizons - This is a condensed version of paper SPE 74013, which was presented at the SPE International Conference on Health, Safety, and Environment in Oil and Gas E&P held in Kuala Lumpur, Malaysia, 20-22 March 2002.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.