We present evidence that insulin-like growth factor II (IGF-II) mediates growth in early mouse embryos and forms a pathway in which imprinted genes influence development during preimplantation stages, mRNA and protein for IGF-II were expressed in preimplantation mouse embryos, but the related factors IGF-I and insulin were not. IGF-I and insulin receptors and the IGF-II/mannose-6-phosphate receptor were expressed. Exogenous IGF-II or IGF-I increased the cell number in cultured blastocysts, but a mutant form of IGF-II that strongly binds only the IGF-II receptor did not. Reduction of IGF-II expression by antisense IGF-II oligonucleotides decreased the rate of progression to the blastocyst stage and decreased the cell number in blastocysts. Preimplantation parthenogenetic mouse embryos expressed mRNA for the IGF-II receptor but not for either IGF-II ligand or the IGF-I receptor, indicating that the latter genes are not expressed when inherited maternally. These data imply that some growth factors and receptors, regulated by genomic imprinting, may control cell proliferation from the earliest stages of embryonic development.
Cell lineage analyses suggest that cortical neuroblasts are capable of undertaking both radial and tangential modes of cell movement. However, it is unclear whether distinct progenitors are committed to generating neuroblasts that disperse exclusively in either radial or tangential directions. Using highly unbalanced mouse stem cell chimeras, we have identified certain progenitors that are committed to one mode of cell dispersion only. Radially dispersed neurons expressed glutamate, the neurochemical signature of excitatory pyramidal cells. In contrast, tangential progenitors gave rise to widely scattered neurons that are predominantly GABAergic. These results suggest lineage-based mechanisms for early specification of certain progenitors to distinct dispersion pathways and neuronal phenotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.