The bacterium Proteus mirabilis is capable of movement on solid surfaces by a type of motility called swarming. Boundaries form between swarming colonies of different P. mirabilis strains but not between colonies of a single strain. A fundamental requirement for boundary formation is the ability to discriminate between self and non-self. We have isolated mutants that form boundaries with their parent. The mutations map within a six-gene locus that we term ids for identification of self. Five of the genes in the ids locus are required for recognition of the parent strain as self. Three of the ids genes are interchangeable between strains and two encode specific molecular identifiers.
The transition from a planktonic (free-swimming) existence to growth attached to a surface in a biofilm occurs in response to environmental factors, including the availability of nutrients. We show that the catabolite repression control (Crc) protein, which plays a role in the regulation of carbon metabolism, is necessary for biofilm formation in Pseudomonas aeruginosa. Using phase-contrast microscopy, we found that a crc mutant only makes a dispersed monolayer of cells on a plastic surface but does not develop the dense monolayer punctuated by microcolonies typical of the wild-type strain. This is a phenotype identical to that observed in mutants defective in type IV pilus biogenesis. Consistent with this observation, crc mutants are defective in type IV pilus-mediated twitching motility. We show that this defect in type IV pilus function is due (at least in part) to a decrease in pilA (pilin) transcription. We propose that nutritional cues are integrated by Crc as part of a signal transduction pathway that regulates biofilm development.
The bacterium Listeria monocytogenes can cause a life-threatening systemic illness in humans. Despite decades of progress in animal models of listeriosis, much remains unknown about the processes of infection and colonization. Here, we report that L. monocytogenes can replicate in the murine gall bladder and provide evidence that its replication there is extracellular and intraluminal. In vivo bioluminescence imaging was employed to determine the location of the infection over time in live animals, revealing strong signals from the gall bladder over a period of several days, in diseased as well as asymptomatic animals. The data suggest that L. monocytogenes may be carried in the human gall bladder.
Swarming colonies of the bacterium Proteus mirabilis are capable of self-recognition and territorial behavior. Swarms of independent P. mirabilis isolates can recognize each other as foreign and establish a visible boundary where they meet; in contrast, genetically identical swarms merge. The ids genes, which encode self-identity proteins, are necessary but not sufficient for this territorial behavior. Here we have identified two new gene clusters: one (idr) encodes rhs-related products, and another (tss) encodes a putative type VI secretion (T6S) apparatus. The Ids and Idr proteins function independently of each other in extracellular transport and in territorial behaviors; however, these self-recognition systems are linked via this type VI secretion system. The T6S system is required for export of select Ids and Idr proteins. Our results provide a mechanistic and physiological basis for the fundamental behaviors of self-recognition and territoriality in a bacterial model system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.