Adaptive streaming addresses the increasing and heterogeneous demand of multimedia content over the Internet by offering several encoded versions for each video sequence. Each version (or representation) is characterized by a resolution and a bit rate, and it is aimed at a specific set of users, like TV or mobile phone clients. While most existing works on adaptive streaming deal with effective playout-buffer control strategies on the client side, in this paper we take a providers' perspective and propose solutions to improve user satisfaction by optimizing the set of available representations. We formulate an integer linear program that maximizes users' average satisfaction, taking into account network dynamics, type of video content, and user population characteristics. The solution of the optimization is a set of encoding parameters corresponding to the representations set that maximizes user satisfaction. We evaluate this solution by simulating multiple adaptive streaming sessions characterized by realistic network statistics, showing that the proposed solution outperforms commonly used vendor recommendations, in terms of user satisfaction but also in terms of fairness and outage probability. The simulation results show that video content information as well as network constraints and users' statistics play a crucial role in selecting proper encoding parameters to provide fairness among users and to reduce network resource usage. We finally propose a few theoretical guidelines that can be used, in realistic settings, to choose the encoding parameters based on the user characteristics, the network capacity and the type of video content. Index TermsDynamic adaptive streaming over HTTP, content distribution, video streaming, integer linear program.
More and more users are watching online videos produced by non-professional sources (e.g., gamers, teachers of online courses, witnesses of public events) by using an increasingly diverse set of devices to access the videos (e.g., smartphones, tablets, HDTV). Live streaming service providers can combine adaptive streaming technologies and cloud computing to satisfy this demand. In this paper, we study the problem of preparing live video streams for delivery using cloud computing infrastructure, e.g., how many representations to use and the corresponding parameters (resolution and bit-rate). We present an integer linear program (ILP) to maximize the average user quality of experience (QoE) and a heuristic algorithm that can scale to large number of videos and users.We also introduce two new datasets: one characterizing a popular live streaming provider (Twitch) and another characterizing the computing resources needed to transcode a video. They are used to set up realistic test scenarios. We compare the performance of the optimal ILP solution with current industry standards, showing that the latter are sub-optimal. The solution of the ILP also shows the importance of the type of video on the optimal streaming preparation. By taking advantage of this, the proposed heuristic can efficiently satisfy a time varying demand with an almost constant amount of computing resources.
User-Generated live video streaming systems are services that allow anybody to broadcast a video stream over the Internet. These Over-The-Top services have recently gained popularity, in particular with e-sport, and can now be seen as competitors of the traditional cable TV. In this paper, we present a dataset for further works on these systems. This dataset contains data on the two main user-generated live streaming systems: Twitch and the live service of YouTube. We got three months of traces of these services from January to April 2014. Our dataset includes, at every five minutes, the identifier of the online broadcaster, the number of people watching the stream, and various other media information. In this paper, we introduce the dataset and we make a preliminary study to show the size of the dataset and its potentials. We first show that both systems generate a significant traffic with frequent peaks at more than 1 Tbps. Thanks to more than a million unique uploaders, Twitch is in particular able to offer a rich service at anytime. Our second main observation is that the popularity of these channels is more heterogeneous than what have been observed in other services gathering user-generated content.
No abstract
Neste trabalho apresentamos medidas de conectividade para redes complexas. Essas medidas identificam os nodos importantes em uma rede de acordo com a conectividade dos mesmos em relação aos demais nodos. Mostramos como calcular o valor da medida que chamamos de vértice-conectividade e que denotamos por κ(v). Relacionamos o valor da vértice-conectividade com outras medidas como grau de intermediação, closeness, excentricidade, grau e medidas baseadas em cortes de arestas. Analisamos as medidas em casos extremos e em redes sintéticas aleatórias.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.