Studying cell-to-cell heterogeneity requires techniques which robustly deliver reproducible results with single-cell sensitivity. Through a new fabrication method for the microarrays for mass spectrometry (MAMS) platform, we now have attained robustness and reproducibility in our single-cell level mass spectrometry measurements that allowed us to combine single-cell MAMS-based measurements from different days and samples. By combining multiple measurements, we were able to identify three co-existing phenotypes in an isogenic population of Saccharomyces cerevisiae characterized by distinctively different levels of glycolytic intermediates.
A novel laser micro-machining technique to produce high density micro-structures called Synchronized Image Scanning (SIS) was introduced a couple of years ago. Over this period of time, the technique was refined in a major effort to meet the needs of various industries. There is an increasing demand for micro-structuring of large and super large area optical films, e.g. for Rear Projection TV, anti counterfeit packaging material and 3D displays. Especially in the display industry, where the screens are ever increasing in size, established micro-structuring methods like e-beam milling, diamond turning or the reflow technique struggle to keep up with the development.This paper explains how it is possible to direct laser etch hundreds of millions of lenses into a 2 m x 1.5 m substrate. It looks at the advances made in SIS in recent years regarding seam reduction, overall accuracy and precision when structuring super large area optical films, and it presents the tools and subsystems needed to generate the features in those films. Furthermore, the potential of this exciting laser micro-machining technique for rapid prototyping for all sorts of optical and non-optical structures is mapped out.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.