This study examines aberrant synaptogenesis and myelination of neuronal connections as possible links to neurological sequelae in growth-restricted fetuses. Pregnant guinea pig sows were subjected to uterine blood flow restriction or sham surgeries at midgestation. The animals underwent necropsy at term with fetuses grouped according to body weight and brain-to-liver weight ratios as follows: appropriate for gestational age (n = 12); asymmetrically fetal growth restricted (aFGR; n = 8); symmetrically fetal growth restricted (sFGR; n = 8), and large for gestational age (n = 8). Fetal brains were perfusion fixed and paraffin embedded to determine immunoreactivity for synaptophysin and synaptopodin as markers of synaptic development and maturation, respectively, and for myelin basic protein as a marker for myelination, which was further assessed using Luxol fast blue staining. The most pertinent findings were that growth-restricted guinea pig fetuses exhibited reduced synaptogenesis and synaptic maturation as well as reduced myelination, which were primarily seen in subareas of the hippocampus and associated efferent tracts. These neurodevelopmental changes were more pronounced in the sFGR compared to the aFGR animals. Accordingly, altered hippocampal development involving synaptogenesis and myelination may represent a mechanism by which cognitive deficits manifest in human growth-restricted offspring in later life.
Key pointsr Suboptimal intrauterine conditions and consequent intrauterine growth reduction (IUGR), resulting in low birth weight (LBW), increase the risk for hypertension and cardiovascular disease in adulthood.r LBW offspring who experience an accelerated growth in childhood have a higher risk of cardiovascular disease than those who grow more slowly, suggesting that the postnatal environment interacts with programmed deficits in organ function to influence disease risk.r We show here that arterial stiffening in LBW guinea pig offspring is exacerbated with postnatal feeding of a Western diet, suggesting that IUGR confers heightened vascular susceptibility to postnatal risk factors and thus may contribute to an individual's total risk score.r Our results also demonstrate that the independent effect of the intrauterine environment on vascular function in young adult guinea pigs is greater than the effect of a postnatal Western diet, thus highlighting the importance of prenatal factors on long-term vascular health.Abstract The association between intrauterine growth restriction (IUGR) and hypertension is well established, yet the interaction between IUGR and other pathogenic contributors remains ill-defined. This study examined the independent and interactive effects of fetal growth reduction resulting in low birth weight (LBW), and postnatal Western diet (WD) on vascular function. Growth reduction was induced in pregnant guinea pigs by uterine artery ablation. LBW and normal birth weight (NBW) offspring were randomly assigned to a control diet (CD) or a WD. In young adulthood, length-tension curves were generated in aortic rings and responses to methacholine (MCh) were evaluated in the carotid and aorta using wire myography. Relative to NBW/CD, aortae of NBW/WD offspring were stiffer, as determined by a leftward shift in the length-tension curve, yet the shift in the LBW/CD curve was considerably greater. Aortic stiffening was most severe in LBW/WD (slope: NBW/CD, 1.97 ± 0.04; NBW/WD, 2.16 ± 0.04; LBW/CD, 2.28 ± 0.05; LBW/WD, 2.34 ± 0.07). Maximal responses (E max ) to MCh were significantly blunted in the aorta of LBW/CD vs. NBW/CD (P < 0.05) and in LBW/WD vs. NBW/WD offspring (P < 0.05); but WD alone had no influence on MCh responses. E max values for carotid responses to MCh were reduced in LBW/CD vs. NBW/CD (P < 0.05). Thus, aortic stiffening was influenced more by LBW than by a postnatal WD and the most severe stiffening was observed in LBW/WD offspring. In contrast, blunted endothelial responses in LBW/CD offspring were not exacerbated by WD. IUGR may have a greater independent impact on vascular function than a postnatal WD.
This study examined perturbed aortic development and subsequent wall stiffening as a link to later cardiovascular disease. Placental insufficiency was induced in pregnant guinea pigs at midgestation by uterine artery ligation. Near term, fetuses were killed and defined as normal birth weight (NBW), low birth weight (LBW), and intrauterine growth restricted (IUGR). Offspring were classified according to birth weight and killed in adulthood. Collagen and elastin content of aortas were analyzed using Sirius red and orcein staining, respectively. Immunofluorescence was used for detection of ␣-actin and nonmuscle myosin heavy chain (MHC-B), a marker of synthetic-type vascular smooth muscle cells (VSMCs). Ex vivo generation of length-tension curves was performed with aortic rings from adult offspring. Relative elastic fiber content was decreased by 10% in LBW and 14% in IUGR compared with NBW fetuses. In adulthood, relative elastic fiber content was 51% lower in LBW vs. NBW, and the number of elastic laminae adjusted for wall thickness was 25% lower in LBW (P Ͻ 0.01). The percent area stained for MHC-B was sixfold higher in LBW vs. NBW fetuses (P Ͻ 0.0001) and threefold higher in LBW vs. NBW adult offspring (P Ͻ 0.05). The increase in MHC-B in LBW offspring concurred with a 41% increase in total collagen content and a 33 and 56% increase in relative and total ␣-actin content, respectively (P Ͻ 0.05). Thus aortic wall stiffening in adulthood can be traced to altered matrix composition established under suboptimal intrauterine conditions that is amplified postnatally by the activity of synthetic VSMCs.
An increasing number of applications use the postnatal piglet model in neuroimaging studies, however, these are based primarily on T1 weighted image templates. There is a growing need for a multimodal structural brain template for a comprehensive depiction of the piglet brain, particularly given the growing applications of diffusion weighted imaging for characterizing tissue microstructures and white matter organization. In this study, we present the first multimodal piglet structural brain template which includes a T1 weighted image with tissue segmentation probability maps, diffusion weighted metric templates with multiple diffusivity maps, and population-based whole-brain fiber tracts for postnatal piglets. These maps provide information about the integrity of white matter that is not available in T1 images alone. The availability of this diffusion weighted metric template will contribute to the structural imaging analysis of the postnatal piglet brain, especially models that are designed for the study of white matter diseases. Furthermore, the population-based whole-brain fiber tracts permit researchers to visualize the white matter connections in the piglet brain across subjects, guiding the delineation of a specific white matter region for structural analysis where current diffusion data is lacking. Researchers are able to augment the tracts by merging tracts from their own data to the population-based fiber tracts and thus improve the confidence of the population-wise fiber distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.