Minerals containing peroxide are limited to studtite, (UO2)O2(H2O)4, and metastudtite, (UO2)O2(H2O)2. High-temperature oxide-melt solution calorimetry and solubility measurements for studtite (standard enthalpy of formation at 298 kelvin is -2344.7 +/- 4.0 kilojoules per mole from the elements) establishes that these phases are stable in peroxide-bearing environments, even at low H2O2 concentrations. Natural radioactivity in a uranium deposit, or the radioactivity of nuclear waste, can create sufficient H2O2 by alpha radiolysis of water for studtite formation. Studtite and metastudtite may be important alteration phases of nuclear waste in a geological repository and of spent fuel under any long-term storage, possibly at the expense of the commonly expected uranyl oxide hydrates and uranyl silicates.
In this study, we use solubility and drop-solution calorimetry measurements to determine the thermodynamic properties of the uranyl phosphate phases autunite, uranyl hydrogen phosphate, and uranyl orthophosphate. Conducting the solubility measurements from both supersaturated and undersaturated conditions and under different pH conditions rigorously demonstrates attainment of equilibrium and yields well-constrained solubility product values. We use the solubility data and the calorimetry data, respectively, to calculate standard-state Gibbs free energies of formation and standard-state enthalpies of formation for these uranyl phosphate phases. Combining these results allows us also to calculate the standard-state entropy of formation for each mineral phase. The results from this study are part of a combined effort to develop reliable and internally consistent thermodynamic data for environmentally relevant uranyl minerals. Data such as these are required to optimize and quantitatively assess the effect of phosphate amendment remediation technologies for uranium contaminated systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.