In type I allergy, the cross-linking of membrane IgE on B lymphocytes and of cytophilic IgE on effector cells by their respective allergens are key events. For cross-linking two IgE molecules, allergens need at least two epitopes. On large molecules, these could be different epitopes in a multivalent, or identical epitopes in a symmetrical, fashion. However, the availability of epitopes may be limited on small allergens such as Bet v 1, the major birch pollen allergen. The present work analyzes whether dimerization is required for the cross-linking capacity of this allergen. In immunoblots, murine monoclonal and polyclonal human Bet v 1-specific Abs detected, besides a Bet v 1 monomer of 17 kDa, a dimer of 34 kDa. In dynamic light scattering, Bet v 1 appeared as dimers and even multimers, but a single condition could be defined where it behaved exclusively monomerically. Small-angle x-ray scattering of the monomeric and dimeric samples resulted in diagrams agreeing with the calculated models. Circular dichroism measurements indicated that the structure of Bet v 1 was preserved under monomeric conditions. Skin tests in Bet v 1-allergic mice were positive with Bet v 1 dimer, but remained negative using the monomer. Furthermore, in contrast to dimeric Bet v 1, the monomer was less capable of activating murine memory B cells for IgE production in vivo. Our data indicate that the presentation of two identical epitopes by dimerized allergens is a precondition for cross-linking of IgE on mast cells and B lymphocytes.
Controlled navigation in the phase diagram of protein crystallization and probing by advanced Dynamic Light Scattering (DLS) technology provided new information and more insights about the early processes during the nucleation process. The observed hydrodynamic radius distribution pattern clearly reveals a two-step mechanism of nucleation and the occurrence of liquid dense protein clusters, which were verified by transmission electron microscopy. The growth kinetics of these protein clusters, forming distinct radii fractions, is analyzed in real-time. Further, the data confirmed that critical nuclei show a distinct different radius distribution than the liquid dense clusters. The data and results provide experimental evidence that during nucleation, a formation of distinct liquid clusters with high protein concentration occur prior to a transition to crystal nuclei by increasing the internal structural order of these clusters, subsequently.
A combined imaging and dynamic light scattering (DLS) system has been developed for routine measurements in droplets in the multiwell plates used in protein crystallization. The system was tested with several standard proteins and found to be of high value for rapid identification of good crystallization conditions. A relationship between the rate of protein-aggregate-size increase and the probability of crystal formation was observed. DLS is a suitable tool for a fast optimization of the protein crystallization process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.