Cahaya matahari menjadi salah satu alternatif untuk mengembangkan energi terbarukan. Cahaya matahari dapat memanfaatkan menjadi sumber energi salah satunya adalah energi listrik. Pemanfaatan energi matahari memiliki dampak positif dalam mengurangi polusi udara dan dapat menghemat energi fosil. Cahaya matahari yang digunakan untuk pembangkit sangat berpengaruh seberapa besar intensitas cahaya matahari yang digunakan. Semakin tinggi intensitas cahaya matahari maka semakin tinggi energi listrik yang diserap oleh solar panel. Dengan memanfaatkan sensor BH-1750 berbasis mikrokontroler Arduino maka tujuan dari penelitian ini adalah untuk mengukur seberapa besar intensitas cahaya matahari dikawasan Kampus Universitas Buana Perjuangan Karawang Metode yang digunakan dalam penelitian ini adalah pengukuran intensitas cahaya matahari di kawasan kampus UBP Karawang dengan pengambilan sample selama 30 Menit. Dimulai pada pukul 10.00 WIB -10.30 WIB dengan posisi matahari di prediksi dari 80 derajat sampai 94 derajat. Data yang dihimpun menggunakan satuan lx (LUX) dengan pengaruh temperatur cuaca (ᵒC). Hasil pengukuran menunjukkan bahwa rata-rata intensitas cahaya yang diperoleh sebesar 54627,05 lux pada posisi matahari 94 derajat dengan suhu lingkungan sebesar 34,5 derajat selsius maka menghasilkan rata-rata daya sebesar 0,007998104 W/cm 2 .
Solar cells are becoming so common that every industry except PLN is already using them to produce alternative energy. The more solar cells used, the more light intensity meters are needed to calculate the amount of Illumination in a given area. This research entails constructing or implementing software, calculating the float's balance against the impact of waves, and determining how the float distributes load using the Archimedes principle. Electrical construction and chassis buoyancy are included in the design. When the density of water is greater than the density of the object, namely > objects (997 kg/m3 > 46.73 kg/m3), the variables obtained are the total weight of the buoy of 5,044 kg with the distribution of the object force of 49.43 N and the buoyant force of 1046.08 N. then this design produces the required buoyancy force when manufactured and used.
This study focuses on plastic welding, a technique that employs polypropylene plastic material in 3600-litre reservoir applications. The liquid pressure within it causes hydrostatic pressure in the reservoir. The pressure in the reservoir is approximately 0.01 N/mm2. This study aimed to determine how frequently polypropylene joints leak or sustain damage as a result of welding. Hot gas welding (HGW) with a v-groove connection type is employed (v-grove). Specimens of polypropylene were prepared in accordance with ASTM D638-I. In this study, the input parameters were chosen by varying the welding position and the machine's setting temperature. The results indicated that the required welding temperature for 5 mm-thick polypropylene plastic ranged between 220 and 280 degrees Celsius. In the tensile test on samples S1, S2, and S3, the average decrease in tensile strength of the three test objects was 13.84 N/mm2, 15.98 N/mm2, and 15.21 N/mm2, respectively
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.