We present successful control strategies for dynamically stable robots that avoid low ceilings and other vertical obstacles in a manner similar to limbo dances. Given the parameters of the mission, including the goal and obstacle dimensions, our method uses a sequential composition of IOlinearized controllers and applies stochastic optimization to automatically compute the best controller gains and references, as well as the times for switching between the different controllers. We demonstrate this system through numerical simulations, validation in a physics-based simulation environment, as well as on a novel two-wheeled platform. The results show that the generated control strategies are successful in mission planning for this challenging problem domain and offer significant advantages over hand-tuned alternatives.
Optimizing the control of articulated mobile robots leads to emergent behaviors that improve the effectiveness, efficiency and stability of wheeled humanoids and dynamically stable mobile manipulators. Our simulated results show that optimization over the target pose, height and control parameters results in effective strategies for standing, acceleration and deceleration. These strategies improve system performance by orders of magnitude over existing controllers. This paper presents a simple controller for robot motion and an optimization method for choosing its parameters. By using whole-body articulation, we achieve new skills such as standing and unprecedented levels of performance for acceleration and deceleration of the robot base. We describe a new control architecture, present a method for optimization, and illustrate its functionality through two distinct methods of simulation.
Dental fluorosis in children is a prevalent disease in many regions of the world. One of its root causes is excessive exposure to high concentrations of fluoride in contaminated drinking water during tooth formation. Typically, the disease causes undesirable chalky white or even dark brown stains on the tooth enamel. To help dentists screen the severity of fluorosis, this paper proposes an automatic image-based dental fluorosis segmentation and classification system. Six features from red, green, and blue (RGB) and hue, saturation, and intensity (HIS) color spaces are clustered using unsupervised possibilistic fuzzy clustering (UPFC) into five categories: white, yellow, opaque, brown, and background. The fuzzy k-nearest neighbor method is used for feature classification, and the number of clusters is optimized using the cuckoo search algorithm. The resulting multi-prototypes are further utilized to create a binary mask of teeth and used to segment the tooth region into three groups: white–yellow, opaque, and brown pixels. Finally, a fluorosis classification rule is created based on the proportions of opaque and brown pixels to classify fluorosis into four classes: Normal, Stage 1, Stage 2, and Stage 3. The experimental results on 128 blind test images showed that the average pixel accuracy of the segmented binary tooth mask was 92.24% over the four fluorosis classes, and the average pixel accuracy of segmented teeth into white–yellow, opaque, and brown pixels was 79.46%. The proposed method correctly classified four classes of fluorosis in 86 images from a total of 128 blind test images. When compared with a previous work, this result also indicates 10 out of 15 correct classifications on the blind test images, which is equivalent to a 13.33% improvement over the previous work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.