Equinatoxin II (EqtII) belongs to a unique family of 20-kDa pore-forming toxins from sea anemones. These toxins preferentially bind to membranes containing sphingomyelin and create cation-selective pores by oligomerization of 3-4 monomers. In this work we have studied the binding of EqtII to lipid membranes by the use of lipid monolayers and surface plasmon resonance (SPR). The binding is a two-step process, separately mediated by two regions of the molecule. An exposed aromatic cluster involving tryptophans 112 and 116 mediates the initial attachment that is prerequisite for the next step. Steric shielding of the aromatic cluster or mutation of Trp-112 and -116 to phenylalanine significantly reduces the toxin-lipid interaction. The second step is promoted by the N-terminal amphiphilic helix, which translocates into the lipid phase. The two steps were distinguished by the use of a double cysteine mutant having the N-terminal helix fixed to the protein core by a disulfide bond. The kinetics of membrane binding derived from the SPR experiments could be fitted to a two-stage binding model. Finally, by using membraneembedded quenchers, we showed that EqtII does not insert deeply in the membrane. The first step of the EqtII binding is reminiscent of the binding of the evolutionarily distant cholesterol-dependant cytolysins, which share a similar structural motif in the membrane attachment domain.Targeting and attachment of proteins to membranes is one of the key steps in many cellular processes (1-3). Protein-membrane interactions have been studied intensively in recent years with many different examples of proteins and membranes. These interactions can be promoted at the lipid-water interface by lipid anchors, electrostatic forces or surface-exposed aromatic and aliphatic residues (1, 2, 4). Compared with protein-protein interactions, details of protein-membrane interactions are poorly defined. Some of the best characterized examples are a phospholipase C pleckstrin homology domain specific for phosphatidylinositol trisphosphate (5) and small protein kinase-C-conserved (C2) domains specific for zwitterionic, particularly phosphatidylcholine membranes (6).Another group of proteins interacting with lipid membranes are pore-forming toxins (PFT) 1 (7-10), which bind to membranes before eliciting their toxic effects via the formation of transmembrane pores. The most studied PFT are bacterial since this group includes important virulence factors. Few examples of eukaryotic PFT have been well characterized, exceptions being the actinoporins, cytolysins found exclusively in sea anemones (10, 11). Members of this family have properties distinct from other PFT: they are composed of 175-179 amino acids, contain no cysteine residues, have pIϾ9.5, and show a preference for sphingomyelin (SM)-containing membranes. Actinoporins act on cellular and model lipid membranes by forming cation-selective pores with a hydrodynamic diameter of ϳ2 nm. The mechanism of pore formation involves at least two steps: binding of the water soluble m...
Actinoporins are eukaryotic pore-forming proteins that create 2-nm pores in natural and model lipid membranes by the self-association of four monomers. The regions that undergo conformational change and form part of the transmembrane pore are currently being defined. It was shown recently that the N-terminal region (residues 10 -28) of equinatoxin, an actinoporin from Actinia equina, participates in building of the final pore wall. Assuming that the pore is formed solely by a polypeptide chain, other parts of the toxin should constitute the conductive channel and here we searched for these regions by disulfide scanning mutagenesis. Only double cysteine mutants where the N-terminal segment 1-30 was attached to the -sandwich exhibited reduced hemolytic activity upon disulfide formation, showing that other parts of equinatoxin, particularly the -sandwich and importantly the C-terminal ␣-helix, do not undergo large conformational rearrangements during the pore formation. The role of the -sandwich stability was independently assessed via destabilization of a part of its hydrophobic core by mutations of the buried Trp 117 . These mutants were considerably less stable than the wild-type but exhibited similar or slightly lower permeabilizing activity. Collectively these results show that a flexible N-terminal region and stable -sandwich are pre-requisite for proper pore formation by the actinoporin family.
Background: Actinoporins are pore-forming toxins that damage cellular membranes by ␣-helices. Results: An engineered mutant of actinoporin equinatoxin II reveals sequential steps during pore formation. Conclusion: Pore formation is composed of a succession of ordered steps: fast membrane binding followed by the N-terminal region association with the membrane and oligomerization. Significance: Equinatoxin II pore formation does not require stable prepore intermediate as is often found in other poreforming toxins.
Equinatoxin II is a cytolytic protein isolated from the sea anemone Actinia equina. It is a member of the actinoporins, a family of eukaryotic pore‐forming toxins with a unique mechanism of pore formation. Equinatoxin II is a 20 kDa cysteineless protein, with sphingomyelin‐dependent activity. Recent studies showed that the N‐terminal region of the molecule requires conformational flexibility during pore formation. An understanding of the N‐terminal position in the final pore and its role in membrane insertion and pore stability is essential to define the precise molecular mechanism of pore formation. The formation of pores and their electrophysiologic characteristics were studied with planar lipid membranes. We show that amino acids at positions 1 and 3 of equinatoxin II are exposed to the lumen of the pore. Moreover, sulfhydryl reagents and a hexa‐histidine tag attached to the N‐terminus revealed that the N‐terminus of the toxin extends through the pore to the other (trans) side of the membrane and that negatively charged residues inside the pore are crucial to define the electrophysiologic characteristics of the channel. Finally, we detected a new, less stable, state with a lower conductance by using a deletion mutant in which the first five N‐terminal amino acids were removed. We propose that the first five amino acids help to anchor the amphipathic helix on the trans side of the membrane and consequently stabilize the final transmembrane pore.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.