In the paper, the selected aspects concerning description of viscoelastic behavior of pipe walls during unsteady flow are analyzed. The alternative convolution expression of the viscoelastic term is presented and compared with the corresponding term referring to unsteady friction. Both approaches indicate similarities in the forms of impulse response functions and the parameter properties. The flow memory was introduced into convolution and its impact on the solution was analyzed. To reduce the influence of the numerical errors, implicit Preissmann scheme was applied. The calculation results were verified based on laboratory tests. The study indicated that the flow memory is related to pipe material properties and significantly influences the calculation results. It also showed the role of retardation time in calculations and its relation to flow memory. The proposed approach enabled more detailed analysis of viscoelasticity impact on the pressure characteristics.
The aim of the study is to present the effective and relatively simple empirical approach to rainfall intensity-duration-frequency-formulas development, based on Controlled Random Search (CRS) for global optimization. The approach is mainly dedicated to the cases in which the commonly used IDF-relationships do not provide satisfactory fit between simulations and observations, and more complex formulas with higher number of parameters are advisable. Precipitation data from GdaĔsk gauge station were analyzed as the example, with use of peak-overthreshold method and Chomicz scale for rainfall intensity. General forms of the IDF-function were chosen and the parameter calibration with use of CRS algorithm was developed. The compliance of the obtained IDFformulas with precipitation data and the efficiency of the algorithm were analyzed. The study confirmed the proposed empirical approach may be an interesting alternative for probabilistic ones, especially when IDFrelationship has more complex form and precipitation data do not match "typical" hydrological distributions.
This paper deals with the impact of different forms of urbanization on the basin outflow. The influence of changes in land cover/use, drainage system development, reservoirs, and alternative ways of stormwater management (green roofs, permeable pavements) on basin runoff was presented in the case of a small urban basin in Gdansk (Poland). Seven variants of area development (in the period of 2000-2012) - three historical and four hypothetical - were analyzed. In each case, runoff calculations for three rainfall scenarios were carried out by means of the Hydrologic Modeling System designed by Hydrologic Engineering Center of the U.S. Army Corps of Engineers (HEC-HMS). The Soil Conservation Service (SCS) Curve Number (CN) method was used for calculations of effective rainfall, the kinematic wave model for those of overland flow, and the Muskingum-Cunge model for those of channel routing. The calculations indicated that urban development had resulted in increased peak discharge and runoff volume and in decreased peak time. On the other hand, a significant reduction in peak values was observed for a relatively small decrease in the normal storage level (NSL) in reservoirs or when green roofs on commercial centers were present. The study confirmed a significant increase in runoff as a result of urbanization and a considerable runoff reduction by simple alternative ways of stormwater management.
This paper presents a numerical model of transient flow in a pressure slurry pipeline network with verification based on in situ measurements. The model, primarily verified in laboratory conditions, has been extended and applied to the case of a large and complex slurry pipeline network in Poland. In the model, the equivalent density concept was applied. In situ experiments were performed for various unsteady flow episodes, caused by different pump operation strategies in the industrial pipeline network. Based on the measurements of slurry concentration and pressure variations, the numerical model was tested and verified. A satisfactory coincidence between the calculated and the observed pressure characteristics was achieved. Additional numerical tests led to important conclusions concerning safe pump and valve operation and system security threats.
Rapid transients are particularly dangerous in industrial hydro-transport systems, where solid-liquid mixtures are transported via long pressure pipelines. A mathematical description of such flow is difficult due to the complexity of phenomena and difficulties in determining parameters. The main aim of the study was to examine the influence of the simplified mixture density and wave celerity description on satisfactory reproduction of pressure characteristics during the transient flow of slurry at low concentrations. The paper reports and discusses the selected aspects of experimental and numerical analyses of transient slurry flow in a polyethylene pipe. The experiments were conducted by using the physical model of a slurry’s transportation pressure. The aim of the experiments was to determine the wave celerity during a transient flow in slurries. A low concertation of slurries, which was used during experiments, is typical for one of the biggest slurry networks in Poland. A comparison of the effects of different wave celerity descriptions was performed. The research reported that the theoretical formulas for slurry wave celerity and mixture density were not sufficiently accurate to obtain satisfactory compliance between calculations and observations. To improve the model, the experimental values of wave celerity and the concept of equivalent mixture density have been applied to indirectly consider the influence of variable mixture parameters. With such modifications, the calculated pressure characteristics in all analyzed episodes demonstrated satisfactory compliance with observations. The simplified approach proved to be effective in properly reproducing the intensity and frequency of rapid pressure changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.