As a biomaterial, cellulose can be converted into a wide range of derivatives with desired properties for a variety of medical, biomedical, and pharmaceutical applications. The oxidation of cellulose yields oxidized cellulose (OC, oxycellulose, 6-carboxycellulose). OC represents an important class of biocompatible and bioresorbable polymers. In vivo bioabsorption of OC occurs via chemical depolymerization and enzymatic hydrolysis. Despite the fact OC is well established as a hemostatic agent and is widely used in a clinical practice, it still attracts a great interest and its new applications, especially pharmaceutical, are investigated. The present review is focused on characterization of OC's physical and chemical properties. Its synthesis and mechanisms involved in its in vivo and in vitro biodegradation are discussed. Medical and biomedical applications of OC are summarized, and especially its hemostatic, enterosorbent, and wound-healing properties are described. In addition to these applications, OC could be used as a pharmaceutical excipient in solid (e.g.
Abstract. The aim of this study was to develop novel hydrogel-based beads and characterize their potential to deliver and release a drug exhibiting pH-dependent solubility into distal parts of gastrointestinal (GI) tract. Oxycellulose beads containing diclofenac sodium as a model drug were prepared by the ionotropic external gelation technique using calcium chloride solution as the crosslinking medium. Resulting beads were characterized in terms of particle shape and size, encapsulation efficacy, swelling ability and in vitro drug release. Also, potential drug-polymer interactions were evaluated using Fourier transform infrared spectroscopy. The particle size was found to be 0.92-0.96 mm for inactive (oxycellulose only) and 1.47-1.60 mm for active (oxycellulose-diclofenac sodium) beads, respectively. In all cases, the sphericity factor was between 0.70 and 0.81 with higher values observed for samples containing higher polymer and drug concentrations. The swelling of inactive beads was found to be strongly influenced by the pH and composition (i.e. Na + concentration) of the selected media (simulated gastric fluid vs. phosphate buffer pH 6.8). The encapsulation efficiency of the prepared particles ranged from 58% to 65%. Results of dissolution tests showed that the drug loading inside of the particles influenced the rate of its release. In general, prepared particles were able to release the drug within 12-16 h after a lag time of 4 h. Fickian diffusion was found as the predominant drug release mechanism. Thus, this novel particulate system showed a good potential to deliver drugs specifically to the distal parts of the human GI tract.
The purpose of this experimental work was the development of hydrophilic-lipophilic matrix tablets for controlled release of slightly soluble drug represented here by diclofenac sodium (DS). Drug dissolution profile optimization provided by soluble filler was studied. Matrix tablets were based on cetyl alcohol as the lipophilic carrier, povidone as the gel-forming agent, and common soluble filler, that is lactose or sucrose of different particle size. Physical properties of tablets prepared by melt granulation and drug release in a phosphate buffer of pH 6.8 were evaluated. In vitro studies showed that used filler type, filler to povidone ratio and sucrose particle size influenced the drug release rate. DS dissolution profile could be changed within a wide range from about 50% per 24 hours to almost 100% in 10 hours. The release constant values confirmed that DS was released from matrices by the diffusion and anomalous transport. The influence of sucrose particle size on the drug release rate was observed. As the particle size decreased, the drug release increased significantly and its dissolution profile became more uniform. Soluble fillers participated in the pore-forming process according to their solubility and particle size. Formulations containing 100 mg of the drug, 80 mg of cetyl alcohol, 40 mg of povidone, and 80 mg of either lactose or sucrose (particle size 250-125 microm) were considered optimal for 24-hour lasting dissolution of DS.
Pellets containing drugs of different properties were prepared in a Rotoprocessor in order to study changes in the formulation process and resulting pellet characteristics. Diltiazem hydrochloride, diclofenac sodium, and theophylline were chosen as model drugs. Pellet size distribution, sphericity, density, hardness, friability, and repose angle were determined using standard methods. The amount of water as a wetting agent necessary for successful pellet formulation was observed for each sample and changed depending on drug solubility, concentration, and particle size. The pelletization of freely soluble diltiazem hydrochloride required 24.8-23.1% of the wetting agent and its amount decreased as the drug concentration increased. The demand for water in the formulation of theophylline pellets was 31.0-34.4% and it increased with increasing drug concentration. The pellet samples containing both drugs were easy to prepare. However, the cohesion of micronized diclofenac sodium particles negatively influenced both the pellet size distribution and the formulation process itself. When the drug concentration exceeded 40%, it was not possible to produce pellets of an appropriate size and the process was not reproducible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.