The function of the C5a receptors, C5ar (encoded by C5ar) and C5l2 (encoded by Gpr77), especially of C5l2, which was originally termed a 'default receptor', remains a controversial topic. Here we investigated the role of each receptor in the setting of cecal ligation and puncture-induced sepsis by using antibody-induced blockade of C5a receptors and knockout mice. In 'mid-grade' sepsis (30-40% survival), blockade or absence of either C5ar or C5l2 greatly improved survival and attenuated the buildup of proinflammatory mediators in plasma. In vivo appearance or in vitro release of high mobility group box 1 protein (HMGB1) required C5l2 but not C5ar. In 'high-grade' sepsis (100% lethality), the only protective condition was the combined blockade of C5l2 and C5ar. These data suggest that C5ar and C5l2 contribute synergistically to the harmful consequences in sepsis and that C5l2 is required for the release of HMGB1. Thus, contrary to earlier speculation, C5l2 is a functional receptor rather than merely a default receptor.The complement anaphylatoxin, C5a, is generated during experimental sepsis and has been shown to play adverse roles in survival after cecal ligation and puncture (CLP) 1 16 . In the current work, we describe evidence for the combined roles of C5ar and C5l2 in the harmful outcomes of CLP-induced sepsis, including lethality and the surge of proinflammatory mediators in plasma. These data suggest that both C5ar and C5l2 cooperatively play functional parts in the setting of sepsis and that the role of C5l2 is specifically linked to the release of HMGB1, a known key mediator in CLP-induced lethality. RESULTS Specificity of antibodies to C5a receptorsUsing flow cytometry, we evaluated rabbit polyclonal antibodies to the N-terminal peptide regions of C5ar and C5l2. Antibody to C5ar bound to surfaces of blood neutrophils (PMNs) from wild-type mice (Fig. 1a). When the immunogenic peptide used to raise the antibody to C5ar was added, binding of IgG to PMNs was completely blocked (Fig. 1a). Addition of the C5l2 immunogenic peptide to the C5ar-specific antiserum did not alter the binding of IgG to C5ar (Fig. 1a). Likewise, C5l2-specific antiserum showed binding of IgG to blood PMNs (Fig. 1b). Addition of the immunogenic peptide for C5l2 abolished the IgG binding ( Fig. 1b), whereas addition of irrelevant peptide (immunogenic peptide for C5ar) did not affect binding (Fig. 1b). These data define the specificities of the antibodies to C5ar and C5l2.In order to address the concern that the absence of C5l2 might be associated with reduced expression of C5ar, we assessed the amount of C5ar on PMNs from either wild-type (Gpr77 +/+ ) or Gpr77 -/-mice (Fig. 1c). No quantitative difference in C5ar content was noted on the surface of PMNs from the two groups of mice. Accordingly, when PMNs from C5ar1 -/-and wild-type (C5ar1 +/+ ) mice were stained with the antibody to C5l2, C5ar1 -/-cells had similar expression of C5l2 on their surfaces as compared to cells from wild-type mice (Fig. 1d). These results suggest th...
In the last few years, there has been increasing interest in the physiological role of acylation-stimulating protein (ASP). Recent studies in rats and mice, in particular in C3 (-/-) mice that are ASP deficient, have advanced our understanding of the role of ASP. Of note, the background strain of the mice influences the phenotype of delayed postprandial triglyceride clearance in ASP-deficient mice. Administration of ASP in all types of lean and obese mice studied to date, however, enhances postprandial triglyceride clearance. On the other hand, regardless of the background strain, ASP-deficient mice demonstrate reduced body weight, reduced leptin and reduced adipose tissue mass, suggesting that ASP deficiency results in protection against development of obesity. In humans, a number of studies have examined the relationship between ASP, obesity, diabetes and dyslipidemia as well as the influence of diet, exercise and pharmacological therapy. While many of these studies have small subject numbers, interesting observations may help us to better understand the parameters that may influence ASP production and ASP action. The aim of the present review is to provide a comprehensive overview of the recent literature on ASP, with particular emphasis on those studies carried out in rodents and humans.
Obesity and overnutrition during pregnancy affect fetal programming of adult disease. Children born after maternal bariatric gastrointestinal bypass surgery (AMS) are less obese and exhibit improved cardiometabolic risk profiles carried into adulthood compared with siblings born before maternal surgery (BMS). This study was designed to analyze the impact of maternal weight loss surgery on methylation levels of genes involved in cardiometabolic pathways in BMS and AMS offspring. Differential methylation analysis between a sibling cohort of 25 BMS and 25 AMS (2-25 y-old) offspring from 20 mothers was conducted to identify biological functions and pathways potentially involved in the improved cardiometabolic profile found in AMS compared with BMS offspring. Links between gene methylation and expression levels were assessed by correlating genomic findings with plasma markers of insulin resistance (fasting insulin and homeostatic model of insulin resistance). A total of 5,698 genes were differentially methylated between BMS and AMS siblings, exhibiting a preponderance of glucoregulatory, inflammatory, and vascular disease genes. Statistically significant correlations between gene methylation levels and gene expression and plasma markers of insulin resistance were consistent with metabolic improvements in AMS offspring, reflected in genes involved in diabetes-related cardiometabolic pathways. This unique clinical study demonstrates that effective treatment of a maternal phenotype is durably detectable in the methylome and transcriptome of subsequent offspring.developmental origins | epigenetics | intrauterine environment | glucose metabolism | adiposity C hildhood overweight and obesity have increased dramatically in recent decades (1). Parental obesity increases the risk of obesity in offspring through genetic, biological, and environmental influences evident in associations between maternal body mass index (BMI), offspring adiposity, and cardiovascular disease (CVD) risk factors (2-4). Maternal obesity, weight gain, increased interpregnancy BMI, and gestational diabetes all increase risks of offspring obesity and type 2 diabetes mellitus (T2DM) (5, 6). Several genetic studies of nutritional response and metabolic control support the hypothesis that specific epigenetic changes contribute to early nutritional fetal programming, increasing the risk of metabolic disorders later in life (7-9).The intrauterine environment including nutritional factors, toxic exposures, and maternal stress participates in fetal programming (10). Maternal diet and adiposity impact methylation levels affecting specific gene functions. Prenatal exposure to famine during the Dutch hunger winter of 1944 is associated with obesity with less DNA methylation ("undermethylation") of the imprinted insulin-like growth factor 2 (IGF2) gene in exposed offspring relative to their unexposed siblings (11). Recently, retinoid X receptor alpha (RXRA) promoter methylation was demonstrated to correlate with increased adiposity in two independent cohorts of ch...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.