Excess caloric intake can lead to insulin resistance. The underlying reasons are complex but likely related to ectopic lipid deposition in nonadipose tissue. We hypothesized that the inability to appropriately expand subcutaneous adipose tissue may be an underlying reason for insulin resistance and beta cell failure. Mice lacking leptin while overexpressing adiponectin showed normalized glucose and insulin levels and dramatically improved glucose as well as positively affected serum triglyceride levels. Therefore, modestly increasing the levels of circulating full-length adiponectin completely rescued the diabetic phenotype in ob/ob mice. They displayed increased expression of PPARgamma target genes and a reduction in macrophage infiltration in adipose tissue and systemic inflammation. As a result, the transgenic mice were morbidly obese, with significantly higher levels of adipose tissue than their ob/ob littermates, leading to an interesting dichotomy of increased fat mass associated with improvement in insulin sensitivity. Based on these data, we propose that adiponectin acts as a peripheral "starvation" signal promoting the storage of triglycerides preferentially in adipose tissue. As a consequence, reduced triglyceride levels in the liver and muscle convey improved systemic insulin sensitivity. These mice therefore represent what we believe is a novel model of morbid obesity associated with an improved metabolic profile.
Adiponectin is a plasma protein expressed exclusively in adipose tissue. Adiponectin levels are linked to insulin sensitivity, but a direct effect of chronically elevated adiponectin on improved insulin sensitivity has not yet been demonstrated. We identified a dominant mutation in the collagenous domain of adiponectin that elevated circulating adiponectin values in mice by 3-fold. Adiponectinemia raised lipid clearance and lipoprotein lipase activity, and suppressed insulin-mediated endogenous glucose production. The induction of adiponectin during puberty and the sexual dimorphism in adult adiponectin values were preserved in these transgenic animals. As a result of elevated adiponectin, serum PRL values and brown adipose mass both increased. The effects on carbohydrate and lipid metabolism were associated with elevated phosphorylation of 5'-AMP-activated protein kinase in liver and elevated expression of peroxisomal proliferator-activated receptor gamma2, caveolin-1, and mitochondrial markers in white adipose tissue. These studies strongly suggest that increasing endogenous adiponectin levels has direct effects on insulin sensitivity and may induce similar physiological responses as prolonged treatment with peroxisomal proliferator-activated receptor gamma agonists.
OBJECTIVEThe mammalian target of rapamycin (mTOR)/p70 S6 kinase 1 (S6K1) pathway is a critical signaling component in the development of obesity-linked insulin resistance and operates a nutrient-sensing negative feedback loop toward the phosphatidylinositol 3-kinase (PI 3-kinase)/Akt pathway. Whereas acute treatment of insulin target cells with the mTOR complex 1 (mTORC1) inhibitor rapamycin prevents nutrient-induced insulin resistance, the chronic effect of rapamycin on insulin sensitivity and glucose metabolism in vivo remains elusive.RESEARCH DESIGN AND METHODSTo assess the metabolic effects of chronic inhibition of the mTORC1/S6K1 pathway, rats were treated with rapamycin (2 mg/kg/day) or vehicle for 15 days before metabolic phenotyping.RESULTSChronic rapamycin treatment reduced adiposity and fat cell number, which was associated with a coordinated downregulation of genes involved in both lipid uptake and output. Rapamycin treatment also promoted insulin resistance, severe glucose intolerance, and increased gluconeogenesis. The latter was associated with elevated expression of hepatic gluconeogenic master genes, PEPCK and G6Pase, and increased expression of the transcriptional coactivator peroxisome proliferator–activated receptor-γ coactivator-1α (PGC-1α) as well as enhanced nuclear recruitment of FoxO1, CRTC2, and CREB. These changes were observed despite normal activation of the insulin receptor substrate/PI 3-kinase/Akt axis in liver of rapamycin-treated rats, as expected from the blockade of the mTORC1/S6K1 negative feedback loop.CONCLUSIONSThese findings unravel a novel mechanism by which mTORC1/S6K1 controls gluconeogenesis through modulation of several key transcriptional factors. The robust induction of the gluconeogenic program in liver of rapamycin-treated rats underlies the development of severe glucose intolerance even in the face of preserved hepatic insulin signaling to Akt and despite a modest reduction in adiposity.
Obesity and overnutrition during pregnancy affect fetal programming of adult disease. Children born after maternal bariatric gastrointestinal bypass surgery (AMS) are less obese and exhibit improved cardiometabolic risk profiles carried into adulthood compared with siblings born before maternal surgery (BMS). This study was designed to analyze the impact of maternal weight loss surgery on methylation levels of genes involved in cardiometabolic pathways in BMS and AMS offspring. Differential methylation analysis between a sibling cohort of 25 BMS and 25 AMS (2-25 y-old) offspring from 20 mothers was conducted to identify biological functions and pathways potentially involved in the improved cardiometabolic profile found in AMS compared with BMS offspring. Links between gene methylation and expression levels were assessed by correlating genomic findings with plasma markers of insulin resistance (fasting insulin and homeostatic model of insulin resistance). A total of 5,698 genes were differentially methylated between BMS and AMS siblings, exhibiting a preponderance of glucoregulatory, inflammatory, and vascular disease genes. Statistically significant correlations between gene methylation levels and gene expression and plasma markers of insulin resistance were consistent with metabolic improvements in AMS offspring, reflected in genes involved in diabetes-related cardiometabolic pathways. This unique clinical study demonstrates that effective treatment of a maternal phenotype is durably detectable in the methylome and transcriptome of subsequent offspring.developmental origins | epigenetics | intrauterine environment | glucose metabolism | adiposity C hildhood overweight and obesity have increased dramatically in recent decades (1). Parental obesity increases the risk of obesity in offspring through genetic, biological, and environmental influences evident in associations between maternal body mass index (BMI), offspring adiposity, and cardiovascular disease (CVD) risk factors (2-4). Maternal obesity, weight gain, increased interpregnancy BMI, and gestational diabetes all increase risks of offspring obesity and type 2 diabetes mellitus (T2DM) (5, 6). Several genetic studies of nutritional response and metabolic control support the hypothesis that specific epigenetic changes contribute to early nutritional fetal programming, increasing the risk of metabolic disorders later in life (7-9).The intrauterine environment including nutritional factors, toxic exposures, and maternal stress participates in fetal programming (10). Maternal diet and adiposity impact methylation levels affecting specific gene functions. Prenatal exposure to famine during the Dutch hunger winter of 1944 is associated with obesity with less DNA methylation ("undermethylation") of the imprinted insulin-like growth factor 2 (IGF2) gene in exposed offspring relative to their unexposed siblings (11). Recently, retinoid X receptor alpha (RXRA) promoter methylation was demonstrated to correlate with increased adiposity in two independent cohorts of ch...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.