, during the peak of the coronavirus disease 2019 (COVID-19) pandemic in Europe, a cluster of children with hyperinflammatory shock with features similar to Kawasaki disease and toxic shock syndrome was reported in England* (1). The patients' signs and symptoms were temporally associated with COVID-19 but presumed to have developed 2-4 weeks after acute COVID-19; all children had serologic evidence of infection with SARS-CoV-2, the virus that causes COVID-19 (1). The clinical signs and symptoms present in this first cluster included fever, rash, conjunctivitis, peripheral edema, gastrointestinal symptoms, shock, and elevated markers of inflammation and cardiac damage (1). On May 14, 2020, CDC published an online Health Advisory that summarized the manifestations of reported multisystem inflammatory syndrome in children (MIS-C), outlined a case definition, † and asked clinicians to report suspected U.S. cases to local and state health departments. As of July 29, a total of 570 U.S. MIS-C patients who met the case definition had been reported to CDC. A total of 203 (35.6%) of the patients had a clinical course consistent with previously published MIS-C reports, characterized predominantly by shock, cardiac dysfunction, abdominal pain, and markedly elevated inflammatory markers, and almost all had positive SARS-CoV-2 test results. The remaining 367 (64.4%) of MIS-C patients had manifestations that appeared to overlap with acute COVID-19 (2-4), had a less severe clinical course, or had features of Kawasaki disease. § Median duration of hospitalization was 6 days; 364 patients (63.9%) required care in an intensive care * https://www.rcpch.ac.uk/sites/default/files/2020-05/COVID-19-Paediatricmultisystem-%20inflammatory%20syndrome-20200501.pdf. † The MIS-C case definition included a patient aged <21 years with fever, laboratory evidence of inflammation, and evidence of clinically severe illness requiring hospitalization, with multisystem organ involvement (cardiovascular, dermatologic, gastrointestinal, hematologic, neurologic, renal, or respiratory) who tested positive for SARS-CoV-2 or had exposure to COVID-19. https:// www.cdc.gov/mis-c/hcp/. § Kawasaki disease is an acute febrile illness of unknown cause, primarily affecting children, and associated with fever, rash, conjunctivitis, redness in the mouth, cracked lips, and swollen lymph nodes, feet, and hands.
Summary The objective of this study is to examine the trends in body mass index (BMI), waist circumference (WC) and prevalence of overweight (BMI 25 kg/m2 to 27.49 kg/m2), general obesity (BMI ≥ 27.5 kg/m2) and abdominal obesity (WC≥90 cm for men and ≥ 80 cm for women) among Chinese adults from 1993 to 2009. Data were obtained from the China Health and Nutrition Survey, which was conducted from 1993 to 2009 and included a total of 52,621 Chinese adults. During the period of 1993–2009, mean BMI values increased by 1.6 kg/m2 among men and 0.8 kg/m2 among women; mean WC values increased by 7.0 cm among men and 4.7 cm among women. The prevalence of overweight increased from 8.0 % to 17.1% among men (P<0.001) and from 10.7% to 14.4% among women (P<0.001); the prevalence of general obesity increased from 2.9% to 11.4% among men (P<0.001) and from 5.0% to 10.1% among women (P<0.001); the prevalence of abdominal obesity increased from 8.5% to 27.8% among men (P<0.001) and from 27.8 % to 45.9 % among women (P<0.001). Similar significant trends were observed in nearly all age groups and regions for both men and women. The prevalence of overweight, general obesity and abdominal obesity among Chinese adults has increased greatly during the past 17 years.
New York City (NYC) was an epicenter of the coronavirus disease 2019 (COVID-19) outbreak in the United States during spring 2020 (1). During March-May 2020, approximately 203,000 laboratory-confirmed COVID-19 cases were reported to the NYC Department of Health and Mental Hygiene (DOHMH). To obtain more complete data, DOHMH used supplementary information sources and relied on direct data importation and matching of patient identifiers for data on hospitalization status, the occurrence of death, race/ethnicity, and presence of underlying medical conditions. The highest rates of cases, hospitalizations, and deaths were concentrated in communities of color, high-poverty areas, and among persons aged ≥75 years or with underlying conditions. The crude fatality rate was 9.2% overall and 32.1% among hospitalized patients. Using these data to prevent additional infections among NYC residents during subsequent waves of the pandemic, particularly among those at highest risk for hospitalization and death, is critical. Mitigating COVID-19 transmission among vulnerable groups at high risk for hospitalization and death is an urgent priority. Similar to NYC, other jurisdictions might find the use of supplementary information sources valuable in their efforts to prevent COVID-19 infections. This report describes cases of laboratory-confirmed COVID-19 among NYC residents diagnosed during February 29-June 1, 2020, that were reported to DOHMH. DOHMH began COVID-19 surveillance in January 2020 when testing capacity for SARS-CoV-2 (the virus that causes COVID-19) using real-time reverse transcription-polymerase chain reaction (RT-PCR) was limited by strict testing criteria because of limited test availability only through CDC. The NYC and New York State public health laboratories began testing hospitalized patients at the end of February and early March. DOHMH encouraged patients with mild symptoms to remain at home rather than seek health care because of shortages of personal protective equipment and laboratory tests at hospitals and clinics. Commercial laboratories began testing for SARS-CoV-2 in mid-to late March. During February 29-March 15, patients with laboratory-confirmed COVID-19 were interviewed by DOHMH, and close contacts were identified for monitoring. The rapid rise in laboratory-confirmed cases (cases) quickly made interviewing all patients, as well as contact tracing, unsustainable. Subsequent case investigations
COVID-19-associated deaths were reported in the United States (1). Understanding the demographic and clinical characteristics of decedents could inform medical and public health interventions focused on preventing COVID-19-associated mortality. This report describes decedents with laboratory-confirmed infection with SARS-CoV-2, the virus that causes COVID-19, using data from 1) the standardized CDC case-report form (case-based surveillance) (https://www.cdc.gov/coronavirus/2019-ncov/php/ reporting-pui.html) and 2) supplementary data (supplemental surveillance), such as underlying medical conditions and location of death, obtained through collaboration between CDC and 16 public health jurisdictions (15 states and New York City). Case-based surveillanceDemographic and clinical data about COVID-19 cases are reported to CDC from 50 states, the District of Columbia, New York City, and U.S. territories using a standardized case-report form (case-based surveillance) or in aggregate. Data on 52,166 deaths from 47 jurisdictions among persons with laboratoryconfirmed COVID-19 were reported individually to CDC via case-based surveillance during February 12-May 18, 2020. Among the 52,166 decedents, 55.4% were male, 79.6% were aged ≥65 years, 13.8% were Hispanic/Latino (Hispanic), 21.0% were black, 40.3% were white, 3.9% were Asian, 0.3% were American Indian/Alaska Native (AI/AN), 0.1% were Native Hawaiian or other Pacific Islander (NHPI), 2.6% were multiracial or other race, and race/ethnicity was unknown for 18.0%. (Table 1). Median decedent age was 78 years (interquartile range (IQR) = 67-87 years). Because information about underlying medical conditions was missing for the majority of these decedents (30,725; 58.9%), data regarding medical conditions were not analyzed further using the case-based surveillance data set. Because most decedents reported to the supplementary data program were also reported to case-based surveillance, no statistical comparisons of the decedent characteristics between the data sets were made. * Underlying medical conditions include cardiovascular disease (congenital heart disease, coronary artery disease, congestive heart failure, hypertension, cerebrovascular accident/stroke, valvular heart disease, conduction disorders or dysrhythmias, other cardiovascular disease); diabetes mellitus; chronic lung disease (chronic obstructive pulmonary disease/emphysema, asthma, tuberculosis, other chronic lung diseases); immunosuppression (cancer, human immunodeficiency virus (HIV) infection, identified as being immunosuppressed); chronic kidney disease (chronic kidney disease, end-stage renal disease, other kidney diseases); neurologic conditions (dementia, seizure disorder, other neurologic conditions); chronic liver disease (cirrhosis, alcoholic hepatitis, chronic liver disease, end-stage liver disease, hepatitis B, hepatitis C, nonalcoholic steatohepatitis, other chronic liver diseases); obesity (body mass index ≥30 kg/m 2 ). Information was collected from decedent medical records or death certificates. ...
A number of prospective cohort studies have investigated the associations between consumption of sugar-sweetened beverages (SSB) and the risk of hypertension, CHD and stroke, but revealed mixed results. In the present study, we aimed to perform a dose -response metaanalysis of these prospective studies to clarify these associations. A systematic literature search was conducted using the PubMed and Embase databases up to 5 May 2014. Random-or fixed-effects models were used to calculate the pooled relative risks (RR) with 95 % CI for the highest compared with the lowest category of SSB consumption, and to conduct a dose -response analysis. A total of six prospective studies (240 726 participants and 80 411 incident cases of hypertension) from four publications on hypertension were identified. A total of four prospective studies (194 664 participants and 7396 incident cases of CHD) from four publications on CHD were identified. A total of four prospective studies (259 176 participants and 10 011 incident cases of stroke) from four publications on stroke were identified. The summary RR for incident hypertension was 1·08 (95 % CI 1·04, 1·12) for every additional one serving/d increase in SSB consumption. The summary RR for incident CHD was 1·17 (95 % CI 1·10, 1·24) for every serving/d increase in SSB consumption. There was no significant association between SSB consumption and total stroke (summary RR 1·06, 95 % CI 0·97, 1·15) for every serving/d increase in SSB consumption. The present meta-analysis suggested that a higher consumption of SSB was associated with a higher risk of hypertension and CHD, but not with a higher risk of stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.