Banana bunchy top virus (BBTV; family Nanoviridae, genus Babuvirus) is a multi-component single-stranded DNA virus, which infects banana plants in many regions of the world, often resulting in large-scale crop losses. We analyzed 171 banana leaf samples from fourteen countries and recovered, cloned, and sequenced 855 complete BBTV components including ninety-four full genomes. Importantly, full genomes were determined from eight countries, where previously no full genomes were available (Samoa, Burundi, Republic of Congo, Democratic Republic of Congo, Egypt, Indonesia, the Philippines, and the USA [HI]). Accounting for recombination and genome component reassortment, we examined the geographic structuring of global BBTV populations to reveal that BBTV likely originated in Southeast Asia, that the current global hotspots of BBTV diversity are Southeast Asia/Far East and India, and that BBTV populations circulating elsewhere in the world have all potentially originated from infrequent introductions. Most importantly, we find that rather than the current global BBTV distribution being due to increases in human-mediated movements of bananas over the past few decades, it is more consistent with a pattern of infrequent introductions of the virus to different parts of the world over the past 1,000 years.
The rumen contains a multi-kingdom, commensal microbiome, including protozoa, bacteria, archaea, fungi and viruses, which enables ruminant herbivores to ferment and utilize plant feedstuffs that would be otherwise indigestible. Within the rumen, virus populations are diverse and highly abundant, often outnumbering the microbial populations that they both predate on and co-exist with. To date the research effort devoted to understanding rumen-associated viral populations has been considerably less than that given to the other microbial populations, yet their contribution to maintaining microbial population balance, intra-ruminal microbial lysis, fiber breakdown, nutrient cycling and genetic transfer may be highly significant. This review follows the technological advances which have contributed to our current understanding of rumen viruses and drawing on knowledge from other environmental and animal-associated microbiomes, describes the known and potential roles and impacts viruses have on rumen function and speculates on the future directions of rumen viral research.
The Bioversity International Transit Center (ITC) for banana hosts more than 1500 accessions largely covering the genetic diversity of the genus Musa. Its objective is to conserve this genetic diversity and to supply plant materials to users worldwide. All the Musa accessions must be tested for virus presence and, if infected, virus elimination must be attempted, to enable the supply of virus-free plant material. An international collaborative effort launched under the auspices of Bioversity International (2007)(2008)(2009)(2010)(2011)(2012)(2013) finally led to the implementation of a two-step process to test the accessions. The first step, called pre-indexing, involved only molecular tests and was designed as a pre-screen of new germplasm lines or existing accessions to reduce the need for post-entry virus therapy and repeated virus indexing. The second step, called full indexing, was performed on either older existing accessions or newer accessions which tested negative during pre-indexing, and involved molecular tests, transmission electron microscopy (TEM) and symptom observation. In total, 270 germplasm lines (434 samples) were pre-indexed; while full indexing was carried out on 243 accessions (68 of which had been pre-indexed). A significant proportion of the samples tested during pre-indexing was infected with at least one virus (68%), showing the utility of this early pre-screening step. Banana streak OL virus and Banana mild mosaic virus were the most commonly detected viruses during both pre-and full indexing. For 22 accessions, viral particles were observed by TEM in full indexing while the molecular tests were negative, underlining the importance of combining various detection techniques. After full indexing, viruses were not detected in 166 accessions, which were then released for international distribution from the ITC. This publication exemplifies how the practical application of diagnostic protocols can raise fundamental questions related to their appropriate use in routine practice and the need for their continuous monitoring and improvement after their first publication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.