SUMMARYEarlier observations had suggested that cockroaches might show multiple patterns of leg coordination, or gaits, but these were not followed by detailed behavioral or kinematic measurements that would allow a definite conclusion. We measured the walking speeds of cockroaches exploring a large arena and found that the body movements tended to cluster at one of two preferred speeds, either very slow (<10cms ). To highlight the neural control of walking leg movements, we experimentally reduced the mechanical coupling among the various legs by tethering the animals and allowing them to walk in place on a lightly oiled glass plate. Under these conditions, the rate of stepping was bimodal, clustering at fast and slow speeds. We next used high-speed videos to extract three-dimensional limb and joint kinematics for each segment of all six legs. The angular excursions and three-dimensional motions of the leg joints over the course of a stride were variable, but had different distributions in each gait. The change in gait occurs at a Froude number of ~0.4, a speed scale at which a wide variety of animals show a transition between walking and trotting. We conclude that cockroaches do have multiple gaits, with corresponding implications for the collection and interpretation of data on the neural control of locomotion. Supplementary material available online at
Based on the structural and experimental studies of more than 300 insect species from different lineages, we have developed and characterized a bioinspired polymer material with the ability of multiple glue-free bonding and debonding. The material surface is covered with a pattern of microstructures, which resembles the geometry of tenent hairs previously described from the feet of flies, beetles, earwigs and other insects. The tape with such a microstructure pattern demonstrates at least two times higher pull-off force per unit apparent contact area compared to the flat polymer. Additionally, the tape is less sensitive to contamination by dust particles than a commercially available pressure-sensitive adhesive tape. Even if the 'insect tape' is contaminated, it can be washed with a soap solution in water, in order to completely recover its adhesive properties. We have successfully applied the tape to the 120 g wall-climbing robot Mini-Whegs. Furthermore, the tape can be used for multiple adhering of objects to glass surfaces or as a protective tape for sensitive glass surfaces of optical quality. Another area of potential applications is gripping and manipulation of objects with smooth surfaces.
In this work, we present a dynamic simulation of an earthworm-like robot moving in a pipe with radially symmetric Coulomb friction contact. Under these conditions, peristaltic locomotion is efficient if slip is minimized. We characterize ways to reduce slip-related losses in a constant-radius pipe. Using these principles, we can design controllers that can navigate pipes even with a narrowing in radius. We propose a stable heteroclinic channel controller that takes advantage of contact force feedback on each segment. In an example narrowing pipe, this controller loses 40% less energy to slip compared to the best-fit sine wave controller. The peristaltic locomotion with feedback also has greater speed and more consistent forward progress
The ability to walk on surfaces regardless of the presence or direction of gravity can significantly increase the mobility of a robot for both terrestrial and space applications. Insects and geckos can provide inspiration for both novel adhesive technology and for the locomotory mechanisms employed during climbing. For this work, Mini-Whegs™, a small quadruped robot that uses wheel-legs for locomotion, was altered to explore the feasibility of scaling vertical surfaces using compliant, adhesive feet. Modifications were made to reduce its weight, and its legs were redesigned to enable its feet to better attach and detach from the substrate, mimicking homologous actions observed in animals. The resulting vehicle is selfcontained, power-autonomous, and weighs only 87 grams. Using pressure-sensitive tape, it is capable of walking up a vertical surface, walking upside-down along an inverted surface, and transitioning between orthogonal surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.