The periodontal ligament (PDL) provides support, proprioception, nutrition, and protection within the tooth–PDL–bone complex (TPBC). While understanding the mechanical behavior of the PDL is critical, current research has inferred PDL mechanics from finite element models, from experimental measures on complete TPBCs, or through direct measurement of isolated PDL sections. Here, transducers are used in an attempt to quantify ex vivo PDL strain. In-fiber Bragg grating (FBG) sensors are small flexible sensors that can be placed within an intact TPBC and yield repeatable strain measurements from within the PDL space. The objective of this study was to determine: 1) if the FBG strain measured from the PDL space of intact swine premolars ex vivo was equivalent to physical PDL strains estimated through finite element analysis and 2) if a change in FBG strain could be linearly related to a change in finite element strain under variable tooth displacement, applied to an intact swine TPBC. Experimentally, individual TPBCs were subjected to 2 displacements ( n = 14). The location of the FBG was determined from representative micro–computed tomography images. From a linear elastic finite element model of a TPBC, the strain magnitudes at the sensor locations were recorded. An experimental ratio (i.e., FBG strain at the first displacement divided by the FBG strain at the second displacement) and a finite element ratio (i.e., finite element strain at the first displacement divided by the finite element strain at the second displacement) were calculated. A linear regression model indicated a statistically significant relationship between the experimental and finite element ratio ( P = 0.017) with a correlation coefficient ( R2) of 0.448. It was concluded that the FBG sensor could be used as a measure for a change in strain and thus could be implemented in applications where the mechanical properties of an intact PDL are monitored over time.
Background/Aim
Impact to the orofacial region, in particular teeth, is a frequent incident leading to injury in many sports and can result in health and economic costs for the injured individual. The majority of previous work has applied synthetic models such as plaster or stone, to form analogs of relevant structures to study the potential for impact‐induced injury. Biomechanical studies that have applied tissue models (animal or human) for the purpose of determining the biomechanical measures associated with dental injury are rare. The aim of this study was to apply a simple ex vivo model based on swine dentition to ascertain which of a select list of measurable quantities associated with impact mechanics could predict luxation and fracture of teeth due to impact.
Methods
Mandibular central incisors of ex vivo swine dentitions were impacted using a linear drop tower with heights ranging from 1.20 m to 2.42 m. Seven mechanical predictors were assessed at impact and were then subjected to binary logistic regression techniques to determine which was the best predictor of luxations or fractures of the teeth.
Results
Of the seven mechanical predictors, (1) the velocity of the impacting body (R2 = 0.477), (2) a proxy measure for the change in kinetic energy of the impacting body (R2 = 0.586), and (3) the approximate energy absorbed by the tissue (R2 = 0.722) were found to be statistically significantly different (p < .05), offering the greatest specificity as indicated by receiver operator characteristics. Other measures that are frequently used in impact mechanics, including peak linear acceleration and velocity change, were not statistically significant predictors of tooth injury.
Conclusion
Identifying mechanical predictors for dental injury of unprotected teeth provides a first step in understanding which aspects of an impact event attribute to dental injury and can lay the foundation for future studies that examine alteration in injury mechanics associated with protection devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.