Intra-abdominal tumors, such as ovarian cancer1,2, have a clear predilection for metastasis to the omentum, an organ primarily composed of adipocytes. Currently, it is unclear why tumor cells preferentially home to and proliferate in the omentum, yet omental metastases typically represent the largest tumor in the abdominal cavities of women with ovarian cancer. We show here that primary human omental adipocytes promote homing, migration and invasion of ovarian cancer cells, and that adipokines including interleukin-8 (IL-8) mediate these activities. Adipocyte–ovarian cancer cell coculture led to the direct transfer of lipids from adipocytes to ovarian cancer cells and promoted in vitro and in vivo tumor growth. Furthermore, coculture induced lipolysis in adipocytes and β-oxidation in cancer cells, suggesting adipocytes act as an energy source for the cancer cells. A protein array identified upregulation of fatty acid–binding protein 4 (FABP4, also known as aP2) in omental metastases as compared to primary ovarian tumors, and FABP4 expression was detected in ovarian cancer cells at the adipocyte-tumor cell interface. FABP4 deficiency substantially impaired metastatic tumor growth in mice, indicating that FABP4 has a key role in ovarian cancer metastasis. These data indicate adipocytes provide fatty acids for rapid tumor growth, identifying lipid metabolism and transport as new targets for the treatment of cancers where adipocytes are a major component of the microenvironment.
The role of the fibronectin receptor, α5β1-integrin, as an adhesion receptor and in angiogenesis, is well established. However, its role in cancer cell invasion and metastasis is less clear. We describe a novel mechanism by which fibronectin regulates ovarian cancer cell signaling and promotes metastasis. Fibronectin binding to α5β1-integrin led to a direct association of α5-integrin with the receptor tyrosine kinase, c-Met, activating it in a hepatocyte growth factor/scatter factor (HGF/SF) independent manner. Subsequently, c-Met associated with Src and activated Src and focal adhesion kinase (FAK). Inhibition of α5β1-integrin decreased the phosphorylation of c-Met, FAK and Src, both in vitro and in vivo. Independent activation of c-Met by its native ligand, HGF/SF, or overexpression of a constitutively active FAK in HeyA8 cells could overcome the effect of α5β1-integrin inhibition on tumor cell invasion, indicating that α5β1-integrin is upstream of c-Met, Src and FAK. Inhibition of α5β1-integrin on cancer cells in two xenograft models of ovarian cancer metastasis resulted in a significant decrease of tumor burden, which was independent of the effect of α5β1-integrin on angiogenesis. These data suggest that fibronectin promotes ovarian cancer invasion and metastasis through an α5β1-integrin/c-Met/FAK/Src dependent signaling pathway, transducing signals through c-Met in a HGF/SF independent manner.
Summary Ovarian cancer patients frequently develop resistance to chemotherapy regiments utilizing Taxol and carboplatin. One of the resistance factors that protects cancer cells from Taxol-based therapy is multi-drug resistance 1 (MDR1). micro(mi)RNAs are small noncoding RNAs that negatively regulate protein expression. Members of the let-7 family of miRNAs are downregulated in many human cancers, and low let-7 expression has been correlated with resistance to microtubule targeting drugs (Taxanes), although little is known that would explain this activity. We now provide evidence that, while let-7 is not a universal sensitizer of cancer cells to Taxanes, it affects acquired resistance of cells to this class of drugs by targeting IMP-1, resulting in de-stabilization of the mRNA of MDR1. Introducing let-7g into ADR-RES cells expressing both IMP-1 and MDR1 reduced expression of both proteins rendering the cells more sensitive to treatment with either Taxol or vinblastine without affecting the sensitivity of the cells to carboplatin, a non-MDR1 substrate. This effect could be reversed by reintroducing IMP-1 into let-7g high/MDR1 low cells causing MDR1 to again become stabilized. Consistently, many relapsed ovarian cancer patients tested before and after chemotherapy were found to downregulate let-7 and to co-upregulate IMP-1 and MDR1, and the increase in the expression levels of both proteins after chemotherapy negatively correlated with disease-free time before recurrence. Our data point at IMP-1 and MDR1 as indicators for response to therapy, and at IMP-1 as a novel therapeutic target for overcoming multidrug resistance of ovarian cancer.
TP53 mutation (and associated p53 protein overexpression) is probably a negative prognostic marker in endometrial cancers, but its relevance in the rarer histologic subtypes, including clear cell carcinomas, has not been delineated. Preclinical studies suggest functional interactions between p53 and the BAF250a protein, the product of a tumor suppressor gene ARID1A that is frequently mutated in ovarian clear cell carcinoma. In this study, we evaluated the significance of p53 and BAF250a expression, as assessed by immunohistochemistry, in a group of 50 endometrial clear cell carcinomas. Seventeen of 50 cases (34%) were p53 positive; the remaining 33 cases had a p53 wild-type (p53-wt) immunophenotype. Of the 11 relapses/recurrences in the entire dataset, 73% were in the p53[+] group (p=0.008). On univariate analyses, the median overall survival for the p53-wt patients (83 mo) was longer than the p53[+] patients (63 mo) (p=0.07), and the median progression-free survival for the p53-wt group (88 mo) was significantly longer than the p53[+] group (56 mo) (p=0.01). On multivariate analyses, p53 expression was not associated with reduced overall or progression-free survival. Additionally, p53 status was not significantly associated with pathologic stage or morphologic patterns. Ten of the 50 cases (20%) showed a complete loss of BAF250a expression. There was no significant correlation between p53 and BAF250a expression. The p53+/BAF250a−, p53+/BAF250a+, p53-wt/BAF250a+, and p53-wt/BAF250a− composite immunophenotypes were identified in 8%, 26%, 54% and 12% of cases respectively, and neither loss of BAF250a expression nor composite p53/BAF250a expression patterns were associated with reduced overall or progression-free survival. In conclusion, a significant subset of CCC express p53, and these cases are apparently not definable by their morphologic features. p53 expression may be a negative prognostic factor in this histotype, and warrants additional studies. Loss of BAF250a expression has no prognostic significance in endometrial clear cell carcinomas.
The diagnosis of endometrial atypical hyperplasia/endometrioid intraepithelial neoplasia (AH/EIN) remains challenging and subjective in some cases, with variable histologic criteria and differences of opinion among gynecologic pathologists, potentially leading to under/overtreatment. There has been growing interest in the use of specific immunohistochemical markers as adjuncts in AH/EIN diagnosis. For example, the World Health Organization 2020 Classification specifies that loss of Pten, Pax2, or mismatch repair proteins are desirable diagnostic criteria. Other markers, most notably β-catenin and Ari-d1a, are also aberrantly expressed in some AH/EIN. However, the performance of some markers individually-and more importantly as a group-has not been rigorously explored, raising questions as to which marker(s) or combination(s) is the most effective in practice. Formalin-fixed paraffin-embedded tissue sections from AH/EIN cases (n = 111) were analyzed by immunohistochemistry for 6 markers: Pax2, Pten, Mlh1, β-catenin, Arid1a, and p53. Aberrant expression was tabulated for each case and marker. An additional set of normal endometria (n = 79) was also analyzed to define optimal diagnostic criteria for marker aberrance. The performance characteristics of each marker, the entire panel, and subsets thereof were quantitatively and statistically analyzed. In order of number of cases detected, the most frequently aberrant markers in AH/EIN were Pax2 (81.1% of cases), Pten (50.5%), β-catenin (47.7%), Arid1a (7.2%), Mlh1 (4.5%), and p53 (2.7%). The majority of cases showed aberrant expression of ≥ 2 markers. All 6 markers together identified 92.8% of cases. Arid1a, Mlh1, and p53 were robust and readily scored markers, but all cases showing aberrant expression of these 3 markers were also detected by Pax2, Pten, or β-catenin. A focused panel of only 3 markers (Pax2, Pten, and β-catenin) showed optimal performance characteristics as a diagnostic adjunct in the histopathologic diagnosis of AH/EIN. Use of this panel is practicable and robust, with at least 1 of the 3 markers being aberrant in 92.8% of AH/EIN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.