We report on the preparation of ultrahigh refractive index polymers via the inverse vulcanization of elemental sulfur, selenium, and 1,3-diisopropenylbenzene for use as novel transmissive materials for mid-infrared (IR) imaging applications. Poly(sulfur-random-selenium-random-(1,3-diisopropenylbenzene)) (poly(S-r-Se-r-DIB) terpolymer materials from this process exhibit the highest refractive index of any synthetic polymer (n > 2.0) and excellent IR transparency, which can be directly tuned by terpolymer composition. Sulfur or selenium containing (co)polymers prepared via inverse vulcanization can be described as Chalcogenide Hybrid Inorganic/Organic Polymers (CHIPs) and are polymeric analogues to wholly inorganic Chalcogenide Glasses (ChGs), which are commonly used as transmissive materials in mid-IR imaging. Finally, we demonstrate that CHIPs composed of (poly(S-r-Se-r-DIB) can be melt processed into windows that enabled high quality mid-IR thermal imaging of human subjects and highly resolved imaging of human vasculature.
Poly(sulfur-random-styrene) was made via inverse vulcanization and used for dynamic covalent copolymerization (DCP) to incorporate novel vinylic monomers.
We report on the fabrication of wholly polymeric onedimensional (1-D) photonic crystals (i.e., Bragg reflectors, Bragg mirrors) via solution processing for use in the near (NIR) and the short wave (SWIR) infrared spectrum (1−2 μm) with very high reflectance (R ∼ 90−97%). Facile fabrication of these highly reflective films was enabled by direct access to solution processable, ultrahigh refractive index polymers, termed, Chalcogenide Hybrid Inorganic/ Organic Polymers (CHIPs). The high refractive index (n) of CHIPs materials (n = 1.75−2.10) allowed for the production of narrow band IR Bragg reflectors with high refractive index contrast (Δn ∼ 0.5) when fabricated with low n polymers, such as cellulose acetate (n = 1.47). This is the highest refractive index contrast (Δn ∼ 0.5) demonstrated for an all-polymeric Bragg mirror which directly enabled high reflectivity from films with 22 layers or less. Facile access to modular, thin, highly reflective films from inexpensive CHIPs materials offers a new route to IR Bragg reflectors and other reflective coatings with potential applications for IR photonics, commercial sensing, and LIDAR applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.