In rabies endemic countries, funds and infrastructure are often insufficient to employ the approved gold standard for the definitive diagnosis of rabies: the direct fluorescent test. In the present study, two types (type 1 and 2) of an ICT kit were evaluated for detection of rabies. These were developed using monoclonal antibodies which recognize epitope II and III of the nucleoprotein of rabies virus. Both kits specifically detected all rabies virus strains and there was no cross reactivity with Lyssaviruses (Lagos, Mokola and Duvenhage), Rhabdovirus (VSV and Oita 296/1972) and other common canine‐pathogenic viruses. In type 1, a single type of monoclonal antibody was used. It was capable of detecting recombinant nucleoprotein and showed sensitivity of 95.5% (42/44) and specificity of 88.9% (32/36) using brain samples from rabid dogs. In contrast, type 2 which was made of two different monoclonal antibodies had a lower sensitivity of 93.2% (41/44) and higher specificity of 100% (36/36). These ICT kits provide a simple and rapid method for rabies detection. They need neither cold chain for transportation nor complicated training for personnel. This diagnostic test is suitable for rabies screening, particularly in areas with a high prevalence of rabies and where the fluorescent antibody test is not available.
Background: Human gnathostomiasis is a serious tropical disease, which is often overlooked. There is an urgent need to improve tools to aid the potential diagnosis of the disease in endemic regions. To overcome this, we produced the immunochromatographic test (ICT) kit for a rapid and simple diagnosis of human gnathostomiasis. Findings: The recombinant protein (named rGslic18) was applied to ICT kit as the antigen. The diagnostic value of ICT kit was evaluated using serum samples from parasitologically proven and clinically suspected gnathostomiasis patients, healthy volunteers and patients with other parasitic diseases. The ICT kit exhibited quite high sensitivity (93.75 %) and specificity (97.01 %). Conclusions: The ICT kit is simple, convenient and easy to implement and expected to provide reliable diagnostic results for human gnathostomiasis. It also will be a promising diagnostic tool not only for large-scale epidemiological surveys in endemic or remote areas where diagnostic facilities are poor but also for a rapid clinical diagnosis in the bedside laboratory.
Immunochromatography (IC) is an antigen-detection assay that plays an important role in the rapid diagnosis of influenza virus because the protocol is short time and easy to use. Despite the usability of IC, the sensitivity is approximately 103 pfu per reaction. In addition, antigen-antibody interaction-based method cannot be used for the detection of influenza viruses with major antigenic change. In this study, we established the use of fluorescent immunochromatography (FLIC) to detect a broad spectrum of H5 subtype influenza A viruses. This method has improved sensitivity 10–100 fold higher than traditional IC because of the use of fluorescent conjugated beads. Our Type-E FLIC kit detected all of the H5 subtype influenza viruses that were examined, as well as recombinant hemagglutinin (HA) proteins (rHAs) belonging to the Eurasian H5 subtype viruses and the Type-N diagnosed North American H5 subtype influenza A viruses. Thus, this kit has the improved potential to detect H5 subtype influenza viruses of different clades with both Type-E and Type-N FLIC kits. Compared with PCR-based diagnosis, FLIC has a strong advantage in usability, because the sample preparation required for FLIC is only mix-and-drop without any additional steps such as RNA extraction. Our results can provide new strategies against the spread and transmission of HPAI H5N1 viruses in birds and mammals including humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.