The extracellular matrix (ECM) supports lung tissue architecture and physiology by providing mechanical stability and elastic recoil. Over the last several decades, it has become increasingly clear that the stiffness of the ECM governs many cellular processes, including cell-phenotype and functions during development, healing, and disease. Of all the lung ECM proteins, collagen-I is the most abundant and provides tensile strength. In many fibrotic lung diseases, the expression of collagen is increased which affects the stiffness of the surrounding environment. The goal of this study was to assess the effect on fibroblast morphology, cell death, and inflammation when exposed to 2D and 3D low (0.4 mg/mL) versus high (2.0 mg/mL) collagen-I-matrix environments that model the mechanics of the breathing lung. This study demonstrates that human fetal lung fibroblasts (HFL1), grown in a 3D collagen type-I environment compared to a 2D one, do not form cells with a myofibroblast morphology, express less F-actin stress fibers, exhibit less cell death, and significantly produce less pro-inflammatory IL-6 and IL-8 cytokines. Exposure to mechanical strain to mimic breathing (0.2 Hz) led to the loss of HFL1 fibroblast dendritic extensions as well as F-actin stress fibers within the cell cytoskeleton, but did not influence cytokine production or cell death. This dynamic assay gives researchers the ability to consider the assessment of the mechanodynamic nature of the lung ECM environment in disease-relevant models and the potential of mechano-pharmacology to identify therapeutic targets for treatment.
The lung extracellular matrix (ECM) plays a key role in the normal architecture of the lung, from embryonic lung development to mechanical stability and elastic recoil of the breathing adult lung. The lung ECM can modulate the biophysical environment of cells through ECM stiffness, porosity, topography and insolubility. In a reciprocal interaction, lung ECM dynamics result from the synthesis, degradation and organization of ECM components by the surrounding structural and immune cells. Repeated lung injury and repair can trigger a vicious cycle of aberrant ECM protein deposition, accompanied by elevated ECM stiffness, which has a lasting effect on cell and tissue function. The processes governing the resolution of injury repair are regulated by several pathways; however, in chronic lung diseases such as asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary disease (IPF) these processes are compromised, resulting in impaired cell function and ECM remodeling. Current estimates show that more than 60% of the human coding transcripts are regulated by miRNAs. miRNAs are small non-coding RNAs that regulate gene expressions and modulate cellular functions. This review is focused on the current knowledge of miRNAs in regulating ECM synthesis, degradation and topography by cells and their dysregulation in asthma, COPD and IPF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.