Paraquat (PQ) is a potential human neurotoxicant and is used in models of oxidative stress. We determined the toxicokinetics (TK) and toxicodynamics (TD) of PQ in adult mouse brain following repeated or prolonged PQ exposure. PQ accumulated in different brain regions and reached a plateau after ~18 i.p. (10 mg/kg) doses and resulted in modest morbidity and mortality unpredictably associated with dose interval and number. PQ had divergent effects on horizontal locomotor behavior depending on the number of doses. PQ decreased striatal dopamine levels after the 18th to 36th i.p. dose (10 mg/kg) and reduced the striatal level of tyrosine hydroxylase. Drinking water exposure to PQ (0.03– 0.05 mg/ml) did not result in any mortality and resulted in concentration and time dependent levels in the brain. The brain half-life of PQ varied with mouse strain. PQ accumulates and may saturate a site in mouse brain resulting in complex PQ level and duration-related consequences. These findings should alter our risk assessment of this compound and demonstrate a useful, but complex dynamic model for understanding the consequences of PQ in the brain.
The role of Lewy bodies, Lewy neurites and α-synuclein (αSYN) in the pathophysiology and diagnosis of Parkinson’s disease (PD) is unclear. We used postmortem human tissue, a panel of antibodies (Abs) and confocal microscopy to examine the three-dimensional neurochemical anatomy of the nigrostriatal system. Abs were specific to truncated (tαSYN), phosphorylated and full-length αSYN. The findings demonstrate the critical role of tαSYN in initiating aggregation, a role for other forms of αSYN in aggregate expansion, a reason for the wide variety of proteins present in different aggregates, an explanation for the laminar appearance of aggregates described historically using different methods, the existence of proximal greater than distal aggregation in the vulnerable nigrostriatal pathway, the independent transport of different forms of αSYN as cargo along axons and a possible sequence for the formation of Lewy bodies. Findings differed between incidental Lewy body disease and PD only quantitatively. These findings have implications for understanding the pathogenesis and treatment of PD.
BackgroundParaquat (PQ) has been implicated as a risk factor for the Parkinson disease phenotype (PDP) in humans and mice using epidemiologic or experimental approaches. The toxicokinetics (TK) and toxicodynamics (TD) of PQ in the brain are not well understood.ObjectivesThe TK and TD of PQ in brain were measured after single or repeated doses.MethodsBrain regions were analyzed for PQ levels, amount of lipid peroxidation, and functional activity of the 20S proteasome.ResultsParaquat (10 mg/kg, ip) was found to be persistent in mouse ventral midbrain (VM) with an apparent half-life of approximately 28 days and was cumulative with a linear pattern between one and five doses. PQ was also absorbed orally with a concentration in brain rising linearly after single doses between 10 and 50 mg/kg. The level of tissue lipid peroxides (LPO) was differentially elevated in three regions, being highest in VM, lower in striatum (STR), and least in frontal cortex (FCtx), with the earliest significant elevation detected at 1 day. An elevated level of LPO was still present in VM after 28 days. Despite the cumulative tissue levels of PQ after one, three, and five doses, the level of LPO was not further increased. The activity of the 20S proteasome in the striatum was altered after a single dose and reduced after five doses.ConclusionsThese data have implications for PQ as a risk factor in humans and in rodent models of the PDP.
We have hypothesized that high-dose multiple micronutrients, including antioxidants, as an adjunct to standard (radiation therapy and chemotherapy) or experimental therapy (hyperthermia and immunotherapy), may improve the efficacy of cancer therapy by increasing tumor response and decreasing toxicity. Several in vitro studies and some in vivo investigations support this hypothesis. A second hypothesis is that antioxidants may interfere with the efficacy of radiation therapy and chemotherapy. This hypothesis is based on the concept that antioxidants will destroy free radicals that are generated during therapy, thereby protecting cancer cells against death. None of the published data on the effect of antioxidants in combination with radiation or chemotherapeutic agents on tumor cells supports the second hypothesis. Scientific rationale in support of a micronutrient protocol to be used as an adjunct to standard or experimental cancer therapy is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.