Breeding in raspberry is time-consuming due to the highly heterozygous nature of this perennial fruit crop, coupled with relatively long periods of juvenility. The speed and precision of raspberry breeding can be improved by genetic linkage maps, thus facilitating the development of diagnostic markers for polygenic traits and the identification of genes controlling complex phenotypes. A genetic linkage map (789 cM) of the red raspberry Rubus idaeus has been constructed from a cross between two phenotypically different cultivars; the recent European cultivar Glen Moy and the older North American cultivar Latham. SSR markers were developed from both genomic and cDNA libraries from Glen Moy. These SSRs, together with AFLP markers, were utilised to create a linkage map. In order to test the utility of the genetic linkage map for QTL analysis, morphological data based on easily scoreable phenotypic traits were collected. The segregation of cane spininess, and the root sucker traits of density and spread from the mother plant, was quantified in two different environments. These traits were analysed for significant linkages to mapped markers using MapQTL and were found to be located on linkage group 2 for spines and group 8 for density and diameter. The availability of co-dominant markers allowed heterozygosities to be calculated for both cultivars.
Disease resistance is increasing in importance, as consumers require high-quality raspberry fruit at a time when chemical disease control is undesirable. Breeders have limited resources and rarely include a primary screen for each fungal disease. Marker-assisted breeding would facilitate the introduction of resistance into elite germplasm and breeding lines. An additional 20 simple sequence repeats have been added to the existing raspberry linkage map. Gene H, which determines cane pubescence (genotype HH or Hh), the recessive allele of which gives glabrous canes (genotype hh), has been mapped on to linkage group 2 and shown to be closely associated with resistance to cane botrytis and spur blight but not rust or cane spot. Other map regions on linkage groups 3, 5 and 6 associated with disease resistance are reported here.
Consumption of raspberries promotes human health through intake of pharmaceutically active antioxidants, including cyanidin and pelargonidin anthocyanins; products of flavonoid metabolism and also pigments conferring colour to fruit. Raspberry anthocyanin contents could be enhanced for nutritional health and quality benefits utilising DNA polymorphisms in modern marker assisted breeding. The objective was to elucidate factors determining anthocyanin production in these fruits. HPLC quantified eight anthocyanin cyanidin and pelargonidin glycosides: -3-sophoroside, -3-glucoside, -3-rutinoside and -3-glucosylrutinoside across two seasons and two environments in progeny from a cross between two Rubus subspecies, Rubus idaeus (cv. Glen Moy)xRubus strigosus (cv. Latham). Significant seasonal variation was detected across pigments less for different growing environments within seasons. Eight antioxidants mapped to the same chromosome region on linkage group (LG) 1, across both years and from fruits grown in field and under protected cultivation. Seven antioxidants also mapped to a region on LG 4 across years and for both growing sites. A chalcone synthase (PKS 1) gene sequence mapped to LG 7 but did not underlie the anthocyanin quantitative traits loci (QTL) identified. Other candidate genes including basic-helix-loop-helix (bHLH), NAM/CUC2-like protein and bZIP transcription factor underlying the mapped anthocyanins were identified.
The isolation of polymorphic codominant microsatellite markers in Rubus and in particular red raspberry will provide a tool to investigate gene flow between cultivated and wild raspberries. Microsatellite loci were isolated by screening a PstI size selected genomic library with AC(13) and AG(13). Positive clones were sequenced and primer pairs designed to the sequences flanking identified SSRs. One primer of each pair was fluorescently labelled to facilitate polymerase chain reaction (PCR) product identification on an automated DNA sequencer. We describe 10 polymorphic microsatellite loci developed and demonstrate their usefulness in different Rubus species.
Protected cropping systems have been adopted by the UK industry to improve fruit quality and extend the current season. Further manipulation of season, alongside consideration of climate change scenarios, requires an understanding of the processes controlling fruit ripening. Ripening stages were scored from May to July across different years and environments from a raspberry mapping population. Here the interest was in identifying QTLs for the overall ripening process as well as for the time to reach each stage, and principal coordinate analysis was used to summarise the ripening process. Linear interpolation was also used to estimate the time (in days) taken for each plot to reach each of the stages assessed. QTLs were identified across four chromosomes for ripening and the time to reach each stage. A MADS-box gene, Gene H and several raspberry ESTs were associated with the QTLs and markers associated with plant height have also been identified, paving the way for marker assisted selection in Rubus idaeus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.