Ultraviolet light cured-in-place pipe is a popular trenchless rehabilitation technology used to repair existing buried pipelines without soil excavation. A polymer composite liner is manufactured directly in the field. After curing is complete, the new liner is placed in service to convey flowing water. Long-term water exposure has the potential to degrade the fiber reinforced cured-in-place pipe liners. Like other composites, liner hygrothermal stability could be a major challenge, especially for undercured materials. The objective of this study was to investigate the effect of aggressive environmental conditions such as water, salt solution, and simulated concrete pore solution at 50℃ on cured-in-place pipe liner mechanical and thermo-mechanical performance. Liners were exposed to aqueous solutions ranging from a typical exposure environment to a very aggressive alkaline environment. Cured-in-place pipe liner samples were collected from New York storm sewer installation sites. Specimens were assessed for the degree of curing as determined by differential scanning calorimetry and TGA. Samples were then immersed in aforementioned solutions for investigating the stability of the liners as a function of degree of cure. Both interlaminar shear strength and thermo-mechanical properties significantly differed based on the degree of cure. Cured-in-place pipe liner mechanical and thermo-mechanical properties were significantly impacted by water, salt, and pore solutions exposure. Long-term exposure to salt and alkaline environments may have a detrimental effect on the performance of cured-in-place pipe liners and desires additional scrutiny.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.