BackgroundCigarette butts are the most common form of litter, as an estimated 4.5 trillion cigarette butts are thrown away every year worldwide. Many chemical products are used during the course of growing tobacco and manufacturing cigarettes, the residues of which may be found in cigarettes prepared for consumption. Additionally, over 4000 chemicals may also be introduced to the environment via cigarette particulate matter (tar) and mainstream smoke.MethodsUsing US Environmental Protection Agency standard acute fish bioassays, cigarette butt-derived leachate was analysed for aquatic toxicity. Survival was the single endpoint and data were analysed using Comprehensive Environmental Toxicity Information System to identify the LC50 of cigarette butt leachate to fish.ResultsThe LC50 for leachate from smoked cigarette butts (smoked filter + tobacco) was approximately one cigarette butt/l for both the marine topsmelt (Atherinops affinis) and the freshwater fathead minnow (Pimephales promelas). Leachate from smoked cigarette filters (no tobacco), was less toxic, with LC50 values of 1.8 and 4.3 cigarette butts/l, respectively for both fish species. Unsmoked cigarette filters (no tobacco) were also found to be toxic, with LC50 values of 5.1 and 13.5 cigarette butts/l, respectively, for both fish species.ConclusionToxicity of cigarette butt leachate was found to increase from unsmoked cigarette filters (no tobacco) to smoked cigarette filters (no tobacco) to smoked cigarette butts (smoked filter + tobacco). This study represents the first in the literature to investigate and affirm the toxicity of cigarette butts to fish, and will assist in assessing the potential ecological risks of cigarette butts to the aquatic environment.
The genetic diversity of recent clinical isolates of Candida albicans in Japan was studied on the basis of amplified DNA band lengths determined with a specific PCR primer reported to have been designed to span a transposable intron region in the 25S rRNA gene. Our analyses of 301 clinical isolates of C. albicans showed that they could be classified into five genotypes: genotype A (172 isolates), genotype B (66 isolates), genotype C (56 isolates), genotype D (C. dubliniensis; 5 isolates), and a new genotype (designated genotype E; 2 isolates). The new genotype E was characterized to have a group I intron-like sequence, which is longer than hitherto reported ones and which has a nucleotide sequence length of 962 bp. Our analysis of the 962-bp sequence indicated that it is composed of an intron similar to that of C. dubliniensis of 621 bp with a 341-bp insertion. Analysis of the sequence of the internal transcribed spacer (ITS) region of the genotype E strain showed that its sequence is identical to those of strains of other genotypes, with only a few base substitution differences. Throughout the study, the possible horizontal transfer of the group I intron between C. dubliniensis and C. albicans was suggested. A high degree of correlation between the presence of a group I intron in C. albicans genotype E and susceptibility to the antifungal agent flucytosine was observed. The five isolates of C. dubliniensis examined in the present study showed genetic diversity when they were compared by randomly amplified polymorphic DNA fingerprinting pattern analysis, and this diversity was also confirmed by the analysis of ITS region sequences.
Homes of smokers remained polluted with THS for up to 6 months after cessation. Residents continued to be exposed to THS toxicants that accumulated in settled house dust and on surfaces before smoking cessation. Further research is needed to better understand the consequences of continued THS exposure after cessation and the efforts necessary to remove THS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.