In this paper, we will propose the neural networks integrated circuit (NNIC) which is the driving waveform generator of the 4.0, 2.7, 2.5 mm, width, length, height in size biomimetics microelectromechanical systems (MEMS) microrobot. The microrobot was made from silicon wafer fabricated by micro fabrication technology. The mechanical system of the robot was equipped with small size rotary type actuators, link mechanisms and six legs to realize the ant-like switching behavior. The NNIC generates the driving waveform using synchronization phenomena such as biological neural networks. The driving waveform can operate the actuators of the MEMS microrobot directly. Therefore, the NNIC bare chip realizes the robot control without using any software programs or A/D converters. The microrobot performed forward and backward locomotion, and also changes direction by inputting an external single trigger pulse. The locomotion speed of the microrobot was 26.4 mm/min when the step width was 0.88 mm. The power consumption of the system was 250 mWh when the room temperature was 298 K.
This paper discusses the design of a miniature electromagnetic induction type air turbine generator with a multilayer ceramic magnetic circuit. The air turbine is fabricated using a micro electro mechanical systems (MEMS) process, which can form high-accuracy, high-aspect-ratio parts. The magnetic circuit is fabricated using a multilayer ceramic technology that can form a three-dimensional conductor pattern into which a magnetic material can be introduced. By combining these technologies, a miniature generator comprising a miniature magnetic circuit with a helical conductor structure and magnetic core is achieved. In this study, a three-phase and a single-phase generator were fabricated, which produced rotational motion and output waveforms. In this paper, the generators are discussed with respect to the rotational motion and the shape of the magnetic circuit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.