Glutamate dehydrogenase (GDH) is important in normal glucose homeostasis. Mutations of GDH result in hyperinsulinism/hyperammonemia syndrome. Using PCR/single-strand conformation polymorphism analysis of the gene encoding GDH in 12 Japanese patients with persistent hyperinsulinemic hypoglycemia of infancy (PHHI), we found a mutation (Y266C) in one PHHI patient. This mutation was not found in any of the control or type 2 diabetic subjects. The activity of the mutant GDH (GDH266C), expressed in COS-7 cells, was constitutively elevated, and allosteric regulations by ADP and GTP were severely impaired. The effect of the unregulated increase in GDH activity on insulin secretion was examined by overexpressing GDH266C in an insulinoma cell line, MIN6. Although glutamine alone did not stimulate insulin secretion from control MIN6-lacZ, it remarkably stimulated insulin secretion from MIN6-GDH266C. This finding suggests that constitutively activated GDH enhances oxidation of glutamate, which is intracellularly converted from glutamine to ␣-ketoglutarate, a tricarboxylic acid cycle substrate, which thereby stimulates insulin secretion. Interestingly, insulin secretion is also exaggerated significantly at low glucose concentrations (2 and 5 mmol/l) but not at higher glucose concentrations (8 -25 mmol/l). Our results directly illustrate the importance of GDH in the regulation of insulin secretion from pancreatic -cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.