The new device is slim, biodegradable and the procedure is simple. Thus, periosteal distraction with this device is potential for vertical and horizontal ridge augmentation in oral cavity.
This assignment applies to all translations of the Work as well as to preliminary display/posting of the abstract of the accepted article in electronic form before publication. If any changes in authorship (order, deletions, or additions) occur after the manuscript is submitted, agreement by all authors for such changes must be on file with the Publisher. An author's name may be removed only at his/her written request. (Note: Material prepared by employees of the US government in the course of their official duties cannot be copyrighted.
A prerequisite of tissue engineering approaches with regard to autograft is a suitable scaffold that can harbor cells and signals. Conventionally, such scaffolds have been prepared as 3D scaffolds prefabricated from synthetic or natural biomaterials. RAD16 has been introduced as a new biomaterial, where synthetic peptides self-assemble to form a hydrogel. In this study, RAD16 was examined in terms of osteogenic efficacy and feasibility of ectopic mineralization. Two hundred and seventy-one RAD16 was cocultured with 1 × 10(6) bone marrow cells from the femurs of 6-week-old Wistar male rats in alpha minimum essential medium supplemented with or without dexamethasone. Second, the same volume of the RAD16 construct hosting the cells with or without hydroxyapatite (HA) particles was treated in the dexamethasone medium as well, prepared in a Teflon tube, and implanted subcutaneously. Cell proliferation was prominent in the RAD16 coculture with dexamethasone at 1 week and significantly decreased by 2 weeks, whereas the other combinations remained or inclined, and their osteogenic differentiation was accelerated up to 2 weeks, as seen in increasing alkaline phosphatase (ALP) activity and mRNAs of ALP, OPN, and OCN. The RAD16 implant prepared with HA particles allowed more osteoblast-like cells and blood cells to grow inside, which was accompanied by elevating OPN gene expression and the stronger peak of VEGF gene expression at 2 weeks. Furthermore, more OPN mRNA signal was detected around the RAD16 containing HA particles by 4 weeks. On the other hand, the RAD16 alone represented lower expression of OPN gene. During the experiment, however, no ectopic mineralization was observed in both groups. Conclusively, it was suggested that the RAD16 showed feasibility of serving as a matrix for osteogenic differentiation of cocultured bone marrow cells in vitro and in vivo. Proceeding of exploration and modification of RAD16 are continuously required for cell-based tissue engineering.
Despite the benefits of hydroxyapatite fiber (HAf) as a synthetic bone substitute, materials capable of faster bone regeneration would be more preferable. In this study, effects of HAf with magnesium (Mg-HAf) on bone regeneration were evaluated. In vitro, levels of osteogenic genes were significantly higher in bone marrow cells cultured with Mg-HAf than in those cultured with HAf alone. Moreover, effects of HAf only (control) and 5.7 mol% Mg-HAf on the cranial bones of Japanese white rabbits were evaluated. Micro-CT imaging and histology indicated significant differences between the control and Mg-HAf groups. Significantly higher new bone volumes and percentages were observed in the Mg-HAf group than in controls at 4 and 8 weeks (p<0.05); the newly formed bone was more mature in the Mg-HAf group than in controls. These results indicated that Mg-HAf can enhance osteogenic differentiationrelated gene expression and promote rapid bone formation and maturation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.