Even in the current era of metagenomics, the interpretation of nucleotide sequence data is primarily dependent on knowledge obtained from a limited number of microbes isolated in pure culture. Thus, it is of fundamental importance to expand the variety of strains available in pure culture, to make reliable connections between physiological characteristics and genomic information. In this study, two sulfur oxidizers that potentially represent two novel species were isolated and characterized. They were subjected to whole-genome sequencing together with 7 neutrophilic and chemolithoautotrophic sulfur-oxidizing bacteria. The genes for sulfur oxidation in the obtained genomes were identified and compared with those of isolated sulfur oxidizers in the classes
Betaproteobacteria
and
Gammaproteobacteria
. Although the combinations of these genes in the respective genomes are diverse, typical combinations corresponding to three types of core sulfur oxidation pathways were identified. Each pathway involves one of three specific sets of proteins, SoxCD, DsrABEFHCMKJOP, and HdrCBAHypHdrCB. All three core pathways contain the SoxXYZAB proteins, and a cytoplasmic sulfite oxidase encoded by
soeABC
is a conserved component in the core pathways lacking SoxCD. Phylogenetically close organisms share same core sulfur oxidation pathway, but a notable exception was observed in the family ‘
Sulfuricellaceae
’. In this family, some strains have either core pathway involving DsrABEFHCMKJOP or HdrCBAHypHdrCB, while others have both pathways. A proteomics analysis showed that proteins constituting the core pathways were produced at high levels. While hypothesized function of HdrCBAHypHdrCB is similar to that of Dsr system, both sets of proteins were detected with high relative abundances in the proteome of a strain possessing genes for these proteins. In addition to the genes for sulfur oxidation, those for arsenic metabolism were searched for in the sequenced genomes. As a result, two strains belonging to the families
Thiobacillaceae
and
Sterolibacteriaceae
were observed to harbor genes encoding ArxAB, a type of arsenite oxidase that has been identified in a limited number of bacteria. These findings were made with the newly obtained genomes, including those from 6 genera from which no genome sequence of an isolated organism was previously available. These genomes will serve as valuable references to interpret nucleotide sequences.
Psychrophilic algae blooms can be observed coloring the snow during the melt season in alpine snowfields. These algae are important primary producers on the snow surface environment, supporting the microbial community that coexists with algae, which includes heterotrophic bacteria and fungi. In this study, we analyzed the microbial community of green and red-colored snow containing algae from Mount Asahi, Japan. We found that Chloromonas spp. are the dominant algae in all samples analyzed, and Chlamydomonas is the second-most abundant genus in the red snow. For the bacterial community profile, species belonging to the subphylum Betaproteobacteria were frequently detected in both green and red snow, while members of the phylum Bacteroidetes were also prominent in red snow. Furthermore, multiple independently obtained strains of Chloromonas sp. from inoculates of red snow resulted in the growth of Betaproteobacteria with the alga and the presence of bacteria appears to support growth of the xenic algal cultures under laboratory conditions. The dominance of Betaproteobacteria in algae-containing snow in combination with the detection of Chloromonas sp. with Betaproteobacteria strains suggest that these bacteria can utilize the available carbon source in algae-rich environments and may in turn promote algal growth.
A novel autotrophic, thermophilic bacterium, strain TF1 T , was isolated from a hot spring in Japan. Cells of strain TF1 T were motile, Gram-stain-negative, rod-shaped, 1.0-2.0 mm in length and 0.5-0.6 mm in width. Major components in the cellular fatty acid profile were C 16 : 0 , C 18 : 0 and anteiso-C 17 : 0 . The temperature range for growth was 40-77 8C, and optimum temperature was 75 8C. The pH range for growth was 5.9-9.5, and the optimum pH was 7.5-8.8. Strain TF1 T grew chemolithoautotrophically by disproportionation of sulfur, thiosulfate and sulfite. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain belongs to the family Thermodesulfobacteriaceae. The closest cultivated relative was Caldimicrobium rimae DS T , with highest 16S rRNA gene sequence similarity of 96 %. The genome of strain TF1 T consists of one circular chromosome, with a size of 1.8 Mbp and G+C content of 38.30 mol%. On the basis of its phylogenetic and phenotypic properties, strain TF1 T (5DSM 29380 T 5NBRC 110713 T ) is proposed as the type strain of a novel species, Caldimicrobium thiodismutans sp. nov.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.