Background: Echocardiography vector flow mapping can assess dynamic flow to treat congenital heart diseases. We evaluated intracardiac flow, energy loss, left ventricular output kinetic energy, and energetic performance index using vector flow mapping during Glenn and Damus-Kaye-Stansel procedures in order to assess the efficacy of the surgery. Case presentation: A 9-month-old boy underwent Glenn and Damus-Kaye-Stansel procedures. The energy loss depends on the left ventricular preload; therefore, energy loss decreased after the Glenn procedure. After the Damus-Kaye-Stansel procedure, the kinetic energy would increase owing to the integrated systemic outflow; however, in our case, kinetic energy decreased, which was potentially explained by the fact that kinetic energy also depends on the left ventricular preload. After the Glenn and Damus-Kaye-Stansel procedures, we detected an improvement in energetic performance index, indicating that the cardiac workload improved as well. Conclusion: We revealed the efficiency of the Glenn and Damus-Kaye-Stansel procedures using vector flow mapping.
The Poincaré plot obtained from electroencephalography (EEG) has been used to evaluate the depth of anesthesia. A standalone EEG Analyzer application was developed; raw EEG signals obtained from a bispectral index (BIS) monitor were analyzed using an on-line monitoring system. Correlations between Poincaré plot parameters and other measurements associated with anesthesia depth were evaluated during emergence from inhalational general anesthesia. Of the participants, 20 were adults anesthetized with sevoflurane (adult_SEV), 20 were adults anesthetized with desflurane (adult_DES), and 20 were pediatric patients anesthetized with sevoflurane (ped_SEV). EEG signals were preprocessed through six bandpass digital filters (f0: 0.5–47 Hz, f1: 0.5–8 Hz, f2: 8–13 Hz, f3: 13–20 Hz, f4: 20–30 Hz, and f5: 30–47 Hz). The Poincaré plot-area ratio (PPAR = PPA_fx/PPA_f0, fx = f1∼f5) was analyzed at five frequency ranges. Regardless of the inhalational anesthetic used, there were strong linear correlations between the logarithm of PPAR at f5 and BIS (R2 = 0.67, 0.79, and 0.71, in the adult_SEV, adult_DES, and ped_SEV groups, respectively). As an additional observation, a part of EMG activity at the gamma range of 30–47 Hz probably influenced the calculations of BIS and PPAR_f5 with a non-negligible level. The logarithm of PPAR in the gamma band was most sensitive to state changes during the emergence process and could provide a new non-proprietary parameter that correlates with changes in BIS during measurement of anesthesia depth.
Introduction Coronavirus disease (COVID-19) can lead to severe disease or death and is characterized by a wide range of mild to severe symptoms. In addition to the lungs, studies have reported the involvement of the stomach, intestine, and angiotensin-converting enzyme 2 receptors in the heart. Case report We present a case of a patient with COVID-19 who died soon after developing multi-organ failure and myocardial injury due to COVID-19-associated pneumonia. A 71-year-old man who contracted COVID-19 was admitted to the hospital after presenting with fever for 7 days and developed dyspnea. Following treatment, his respiratory status worsened. Thus, he was transferred to our hospital for intensive care on day 11. Physical examination revealed fever, dyspnea, respiratory distress, and no chest pain. Invasive positive pressure ventilation was initiated for acute respiratory distress syndrome on day 14. On day 15, we observed renal, liver, and coagulation dysfunction, indicating multi-organ failure. Chest radiography did not show clear signs of an increased cardiothoracic ratio or pulmonary congestion. An electrocardiogram (ECG) showed signs of myocardial infarction, which was confirmed by elevated troponin I and creatine kinase levels. The patient's circulatory dynamics did not improve on medication, and he died on day 16. Conclusions We report the case of a patient with severe COVID-19 who died from an exacerbation of myocardial injury. Clinicians should not only evaluate respiration but also assess the heart by performing a 12-lead ECG, echocardiogram, and myocardial injury marker examination. Together, these tools can help predict which patients will develop severe COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.