Dose-length product (DLP) is widely used as an indicator of the radiation dose in computed tomography. The aim of this study was to investigate the significance of sex and body weight in DLP-based monitoring of the radiation dose. Eight hundred computed tomographies of the chest performed using four different scanners were analysed. The DLP was compared with body weight by linear regression in men and women separately. The DLP was positively correlated with body weight, and dependence on sex and weight differed among scanners. Standard DLP values adjusted for sex and weight facilitated interscanner comparison of the radiation dose and its dependence on sex and weight. Adjusting the DLP for sex and weight allowed one to identify examinations with possibly excessive doses independently of weight. Monitoring the DLP in relation to sex and body weight appears to aid detailed comparison of the radiation dose among imaging protocols and scanners and daily observations to find unexpected variance.
We evaluated the effective dose (ED) of the CT component of wholebody PET/CT using software dedicated to CT dose estimation and from dose-length product (DLP) values to establish practical methods of ED estimation. Methods: Eighty adult patients who underwent 18 F-FDG whole-body PET/CT were divided into groups A and B, each consisting of 20 men and 20 women. In group A, ED of the CT component was calculated using CT-Expo for 6 anatomic regions separately, and whole-body ED was obtained by summing the regional EDs (CT-Expo method). DLP was calculated for each of the 6 regions and multiplied by a corresponding conversion factor described in International Commission on Radiological Protection publication 102 to obtain the ED for each region (regional DLP method). Whole-body ED was also calculated as the product of a whole-body DLP value provided by the scanner automatically and a conversion factor (simple DLP method). Moreover, the ED/DLP values were calculated using whole-body ED estimated by the CT-Expo method and the scannerderived DLP, to optimize the conversion factor. In group B, the optimized conversion factor was applied for the estimation of ED by the simple DLP method. Results: In group A, the regional DLP method allowed an accurate estimation of mean whole-body ED as a result of counterbalance of mild overestimation in men and mild underestimation in women, regarding the CT-Expo method as a standard. The simple DLP method using a conversion factor for the trunk (0.015 mSv/mGy/cm) caused overestimation. On the basis of the ED/DLP values in group A, a modified conversion factor of 0.013 mSv/mGy/cm and sex-specific conversion factors of 0.012 and 0.014 mSv/mGy/cm for men and women, respectively, were determined. In group B, the use of the modified conversion factor improved accuracy, and the use of sex-specific conversion factors eliminated sex-dependent residual errors. Conclusion: ED of the CT component of whole-body PET/CT can be assessed by multiplying the scannerderived DLP by a conversion factor optimized for whole-body PET/CT. PET with 18 F-FDG has been accepted as a valuable tool in oncology practice. CT images are commonly acquired together with PET images in a single imaging session with an integrated PET/CT scanner (1) and are used for diagnosis on CT images themselves, localization of lesions delineated by PET, and attenuation correction of PET images. The problem of CT acquisition additional to PET is an increase in radiation exposure. The effective dose (ED) derived from the CT component varies widely from 5 to 25 mSv (2-8) and often exceeds the ED from 18 F-FDG injection. Although a large amount of radiation exposure is required to acquire highquality CT images for diagnostic purposes, lesion localization and attenuation correction can be achieved on CT images of lower quality. Dose reduction with preserving clinical utilities should be pursued in each facility considering the purpose of CT and using dose reduction technologies (9,10).Estimation of ED is a prerequisite for optimization and mo...
We performed phantom experiments to investigate radiation dose in the computed tomography component of oncology positron emission tomography/computed tomography in relation to the scan range. Computed tomography images of an anthropomorphic whole-body phantom were obtained from the head top to the feet, from the head top to the proximal thigh or from the skull base to the proximal thigh. Automatic exposure control using the posteroanterior and lateral scout images offered reasonable tube current modulation corresponding to the body thickness. However, when the posteroanterior scout alone was used, unexpectedly high current was applied in the head and upper chest. When effective dose was calculated on a region-by-region basis, it did not differ greatly irrespective of the scan range. In contrary, when effective dose was estimated simply by multiplying the scanner-derived dose-length product by a single conversion factor, estimates increased definitely with the scan range, indicating severe overestimation in whole-body imaging.
We performed phantom experiments to assess radiation dose in computed tomography (CT) venography of the lower extremities. CT images of a whole-body phantom were acquired using different automatic exposure control settings and scan ranges, simulating CT venography. Tube current decreased in the lower extremities compared to the trunk. The scout direction and dose modulation strength affected tube current, dose length product (DLP) and effective dose. The middle and distal portions of the lower extremities contributed substantially to DLP but not to effective dose. When effective dose was estimated by multiplying DLP by a single conversion factor, overestimation was evident; this became more pronounced as the scan range narrowed. In CT venography of the lower extremities, the scout direction and modulation strength affect radiation dose. Use of DLP severely overestimates radiation dose and underestimates effects of scan range narrowing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.