Tuberoinfundibular peptide of 39 residues (TIP39) is a recently discovered neuropeptide identified on the basis of its ability to activate the PTH2 receptor, and it is thought to be the brain PTH2 receptor's endogenous ligand. The PTH2 receptor is highly expressed in the hypothalamus, suggesting a role in the modulation of neuroendocrinological functions. PTHrP, which also belongs to the PTH-related peptides family, stimulates arginine vasopressin (AVP) release. In the present study, therefore, we investigated the effect of centrally administered TIP39 on AVP release in conscious rats. Intracerebroventricular administration of TIP39 (10-500 pmol/rat) significantly suppressed the plasma AVP concentration in dehydrated rats, and the maximum effect was obtained 5 min after administration (dehydration with 100 pmol/rat TIP39, 4.32 +/- 1.17 pg/ml; vs. control, 8.21 +/- 0.70 pg/ml). The plasma AVP increase in response to either hyperosmolality [ip injection of hypertonic saline (HS), 600 mosmol/kg] or hypovolemia [ip injection of polyethylene glycol (PEG)] was also significantly attenuated by an intracerebroventricular injection of TIP39 (HS with 100 pmol/rat TIP39, 2.65 +/- 0.52 pg/ml; vs. HS alone, 4.69 +/- 0.80 pg/ml; PEG with 100 pmol/rat TIP39, 4.10 +/- 0.79 pg/ml; vs. PEG alone, 6.19 +/- 0.34 pg/ml). Treatment with naloxone [1.5 mg/rat, sc injection], a nonselective opioid receptor antagonist, significantly reversed the inhibitory effects of TIP39 on AVP release. These results suggest that central TIP39 plays an inhibitory role in the osmoregulation and baroregulation of AVP release and that intrinsic opioid systems are involved in its mechanism.
Peptidic glucagon antagonists have been shown to lower blood glucose levels in diabetic models (1-3), but attempts to identify small molecular weight glucagon receptor-binding antagonists have met with little success. Skyrin, a fungal bisanthroquinone, exhibits functional glucagon antagonism by uncoupling the glucagon receptor from adenylate cyclase activation in rat liver membranes (1). We have examined the effects of skyrin on cells transfected with the human glucagon receptor and on isolated rat and human hepatocytes. The skyrin used was isolated from Talaromyces wortmanni American Type Culture Collection 10517. In rat hepatocytes, skyrin (30 µmol/l) inhibited glucagon-stimulated cAMP production (53%) and glucose output (IC 50 56 µmol/l). There was no detectable effect on epinephrine or glucagon-like peptide 1 (GLP-1) stimulation of these parameters, which demonstrates skyrin's selective activity. Skyrin was also evaluated in primary cultures of human hepatocytes. Unlike cell lines, which are largely unresponsive to glucagon, primary human hepatocytes exhibited glucagon-dependent cAMP production for 14 days in culture (EC 50 10 nmol/l). Skyrin (10 µmol/l) markedly reduced glucagon-stimulated cAMP production (55%) and glycogenolysis (27%) in human hepatocytes. The inhibition of glucagon stimulation was a specific property displayed by skyrin and oxyskyrin but not shared by other bisanthroquinones. Skyrin is the first small molecular weight nonpeptidic agent demonstrated to interfere with the coupling of glucagon to adenylate cyclase independent of binding to the glucagon receptor. The data presented in this study indicate that functional uncoupling of the human glucagon receptor from cAMP production results in metabolic effects that could reduce hepatocyte glucose production and hence alleviate diabetic hyperglycemia.
GH secretagogue (GHS) is a small, synthetic compound that has the potential to stimulate GH release via its specific receptors (GHS-R). Ghrelin is a novel 28-amino acid peptide recently isolated from human and rat stomach, and it is thought to be the endogenous ligand for GHS-R. Ghrelin has a variety of physiological functions such as the stimulation of GH release or the increase of food intake by activating NPY neurons. In the present study, we investigated the effects of ghrelin on AVP release in conscious rats. Intracerebroventricular (icv) administration of ghrelin increased the plasma AVP concentration in a dose-dependent manner (1-1000 pmol/rat), and its effect was observed as late as 60 min after the administration. Icv injection of ghrelin caused no significant change in plasma osmolality, plasma volume, or arterial blood pressure. Iv administration of ghrelin (10 nmol/rat) also increased the plasma AVP concentration, which was accompanied by a significant decrease in arterial blood pressure. Pretreatment with antiserum against NPY significantly reduced the plasma AVP increase induced by icv administration of ghrelin. These results suggest that ghrelin plays a stimulatory role in AVP release, which is possibly mediated by NPY neurons.
The V(1b) vasopressin receptor, expressed mainly in the corticotroph of the anterior pituitary, mediates the stimulatory effect of vasopressin on ACTH release. To clarify the regulation of receptor expression, we cloned, sequenced (up to approximately 5 kb from the translation start site), and characterized the 5'-flanking region of the rat V(1b) receptor gene. We identified the transcription start site by amplification of cDNA ends and found a new intron within the 5'-untranslated region (5'-UTR) by comparing the sequence with that of cDNA. We then confirmed that the obtained promoter indeed has transcriptional activity by use of the luciferase reporter in AtT-20 mouse corticotroph cells. Interestingly, there were five short upstream open reading frames (uORFs) located within the 5'-UTR that were found to suppress V(1b) expression. Subsequent mutational analyses showed that the two downstream uORFs have an inhibitory effect on expression in both homologous and heterologous contexts. Furthermore, the inhibition did not accompany a parallel decrease in mRNA, suggesting that the suppressive effect occurs at a level downstream of transcription. Taken together, our data strongly suggest that the expression of the V(1b) receptor is regulated at the posttranscriptional as well as transcriptional level through uORFs within the 5'-UTR region of the mRNA. Whether the uORF-mediated regulation of V(1b) expression is functionally linked to any intracellular and/or extracellular factor(s) awaits further research.
Prolonged exposure of tissues to a receptor agonist often leads to adaptive changes that limit the subsequent responsiveness of the tissue to the same agonist. Recently, we have generated rats transgenic for the metallothionein I-human arginine vasopressin (AVP) fusion gene (Tg), which produced high plasma AVP with relatively preserved renal water excretion, suggesting that there might be adaptive mechanism(s) for maintaining water and electrolyte homeostasis against chronic AVP oversecretion from the earliest stage of life. In this study, to investigate whether down-regulation of AVP V2 receptor (V2R), which could possibly be caused by long-standing high plasma AVP, participates in this adaptive mechanism(s), non-peptidic V2R antagonist OPC31260 was administered to reverse the down-regulation, and water loading was performed after V2R antagonist treatment had been withdrawn. Additionally, to confirm the down-regulation, Northern blotting analysis for V2R mRNA was carried out. Tg rats showed slightly decreased urine volume and water intake with an equivalent plasma [Na + ] level (Tg 140·4 0·6 mEq/l; control 139·3 0·6 mEq/l) under basal conditions. After water loading using a liquid diet containing zinc, which stimulates the promoter region in the transgene, the urine increase showed only limited suppression with a dramatically increased plasma AVP level and mild hyponatremia (135·8 1·8 mEq/l) in Tg rats. When diet containing OPC31260 had been provided for 4 days until the day before the start of water loading, antidiuresis and hyponatremia (125·4 1·4 mEq/l) were significantly potentiated. V2R mRNA expression in kidney was significantly less in Tg rats than in control rats under basal conditions, and this suppression was restored by OPC31260 treatment to levels comparable with those of control rats. These results suggest that long-standing high plasma AVP causes V2R down-regulation, and it may play an important role in the adaptive mechanism(s) for maintaining water and electrolyte homeostasis in chronically AVP-overexpressing rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.