We report the fabrication of transparent field-effect transistors using a single-crystalline thin-film transparent oxide semiconductor, InGaO3(ZnO)5, as an electron channel and amorphous hafnium oxide as a gate insulator. The device exhibits an on-to-off current ratio of approximately 106 and a field-effect mobility of approximately 80 square centimeters per volt per second at room temperature, with operation insensitive to visible light irradiation. The result provides a step toward the realization of transparent electronics for next-generation optoelectronics.
Inorganic solids with wide bandgaps are usually classified as electrical insulators and are used in industry as insulators, dielectrics, and optical materials. Many metallic oxides have wide bandgaps because of the significant contribution of ionic character to the chemical bonds between metallic cations and oxide ions. Their ionic nature simultaneously suppresses the formation of easily ionizable shallow donors or acceptors and enhances the localization of electrons and positive holes. Thus it is understandable that interest in these wide-gap oxides as conductive materials has not been strong.
Crystal structures, optoelectronic properties, and electronic structures of layered oxychalcogenides BiCuOCh (Ch ) S, Se, Te) have been compared to those of LaCuOCh, with an emphasis on the electronic configurations of Bi 3+ (5d 10 6s 2 ) and La 3+ (5d 0 6s 0 ). The BiCuOCh series were expected to exhibit better hole-transport properties than the LaCuOCh series because the pseudo-closed-shell 6s 2 electronic configuration of the Bi 3+ cation was expected to form valence band maxima (VBM) by admixing with the p orbitals of the Ch anions. However, the two series of compounds exhibited similar electrical properties, suggesting that the contribution of the Bi 6s orbitals to the VBM is small in BiCuOCh. The crystal structures and optical properties showed distinct differences; for example, the band gaps of BiCuOCh were smaller than those of LaCuOCh. These findings can be understood on the basis of the electronic structures obtained by photoelectron spectroscopy and density functional theory calculations. The Bi 6s orbitals form stronger and deeper chemical bonds with the O 2p orbitals than with Ch p orbitals and are located ∼2 eV below the VBM, which is mainly formed from the Cu 3d and Ch p orbitals. Thus, the Bi 6s 2 configuration contributes little to the VBM, and BiCuOCh and LaCuOCh have similar hole-transport properties. Also, the smaller band gaps of BiCuOCh result from the deepening of the conduction-band-minima levels, which are composed of unoccupied Bi 6p orbitals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.