The prevalence of diabetes mellitus (DM), considered one of the most common metabolic disorders, has dramatically increased and resulted in higher rates of morbidity and mortality around the world in the past decade. It is well known that insulin resistance in target tissues and a deficiency in insulin secretion from pancreatic β-cells are the main characteristics of type 2 diabetes. The aim of this study was the bio-evaluation of compounds isolated from three selected plant species: namely, Salvia africana-lutea, Leonotis ocymifolia, and Plectranthus madagascariensis, for their glucose-uptake ability. Methanolic extracts were produced from the aerial parts of each plant. Compounds were identified using different spectroscopic techniques. The glucose-uptake ability of each compound was then evaluated in mammalian cells using 2-deoxyglucose-6-phosphate. The cytotoxicity of each compound was established via the MTT assay. Chromatographic purification of the three plant species yielded sixteen pure terpenoids. Compounds 1 (p = 0.0031), 8 (p = 0.0053), and 6 (p = 0.0086) showed a marked increase in glucose uptake, respectively. Additionally, 1, 4, and 6 exhibited cytotoxicity toward mammalian tissue with a decrease in cell viability of ~70%, ~68%, and ~67%, respectively. The results suggested that several compounds demonstrated a marked increase in glucose uptake, while two of the compounds exhibited signs of cytotoxicity. It may, therefore, be suggested that these compounds be considered as potential candidates for novel plant-derived alternative therapies in the treatment of type 2 diabetes.
The prevalence of diabetes mellitus (DM), considered one of the most common metabolic disorders, has dramatically increased and resulted in higher rate of morbidity and mortality around the world, in the past decade. It is well known that insulin resistance in target tissues and a deficiency in insulin secretion from pancreatic β-cells are the main characteristic of type 2 diabetes. The aim of this study was the bio-evaluation of compounds isolated from three selected plant species; namely, Salvia africana-lutea, Leonotis ocymifolia and Plectranthus madagascariensis, for their glucose uptake ability. Methanolic extracts were produced from the arterial part of each plant. Compounds were identified using different spectroscopic techniques. The glucose uptake ability of each compound was then evaluated in mammalian cells using 2-deoxyglucose-6-phosphate. The cytotoxicity of each compound was established via the MTT assay. Chromatographic purification of the three plant species yielded fifteen pure terpenoids. Compounds 1 (p = 0.0031), 8 (p = 0.0053), and 6 (p = 0.0086), showed a marked increase in glucose uptake, with p values of p=0.0031, p=0.0053 and p=0.0086, respectively. Additionally, 1, 4 and 6 exhibited cytotoxicity toward mammalian tissue with a decrease in cell viability of ~70%, ~68% and ~67%, respectively. The results suggested that several compounds demonstrated a marked increase in glucose uptake while two of the compounds exhibited signs of cytotoxicity. It may, therefore, be suggested that these compounds be considered as potential candidates for novel plant-derived alternative therapies in the treatment of type 2 diabetes.
The emergence of SARS-CoV-2 and the subsequent COVID-19 pandemic necessitated the development of adequate vaccines. Despite vaccines being demonstrated to be safe and effective for preventing severe disease and death, vaccine hesitancy remains. Reasons include concerns over adverse effects on male fertility, which have not been widely investigated. Therefore, this study is aimed at determining the impact of COVID-19 vaccination on semen parameters in a retrospective cohort study of South African males undergoing fertility assessment. The patients for this study were adult men who have previously undergone routine semen analysis for fertility assessment at Androcryos Andrology Laboratory (Johannesburg, South Africa) between March 2021 and March 2022. They also received vaccination within 3 months following a semen analysis and underwent a second semen analysis any time post-COVID-19 vaccination. From 277 records analysed, 46 patients met the inclusion criteria, receiving the Pfizer-BioNTech (BNT162b1) (63%), Johnson and Johnson (JNJ-78436735/Ad26.COV2S) (34.8%), and the AstraZeneca (AZD1222) (2.2%) vaccines. Sperm concentration significantly increased postvaccination ( P = 0.0001 ), with no significant changes in semen pH, volume, total sperm count, progressive motility, normal sperm morphology, or chromatin condensation. Results were not influenced by age, type of vaccine received, and the number of days following vaccination, as depicted by multiple regression analysis. In conclusion, there is no evidence of a negative impact of COVID-19 vaccination on male semen parameters, which is consistent with the emerging literature on COVID-19 vaccination and male fertility. COVID-19 vaccinations should not be dismissed based on fear of adverse effects on male fertility parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.