A new structure for an adenine-selective host molecule, featuring the pertinent link of five-six-five-membered heteroaromatic rings and two carbamoyl NH sites, was developed. This structure provides a correctly oriented array of complementary hydrogen bonding sites for the adenine nucleobase, which exploits both Watson-Crick and Hoogsteen-type interactions. The complexation with adenine nucleobases by multiple hydrogen bonding was supported by (1)H NMR spectroscopy. This type of host displayed high selectivity in complexation, with an accompanying fluorescent response to lipophilized adenosine in CHCl(3). Furthermore, a remarkably selective potentiometric response was attained for adenosine 5'-monophosphate over 5'-GMP, 5'-CMP, and 5'-UMP by using an ion-selective electrode with a PVC-supported solvent polymeric membrane. This indicates recognition of water-soluble nucleotide guests through the membrane-water interface. These findings are expected to form a reliable basis for the development of artificial sensing systems for mononucleotides in biological systems.
(1)H-NMR spectroscopy was successfully applied to the quantitative determination of atractylon in Atractylodis Rhizoma (dried rhizomes of Atractylodes ovata and A. japonica) and Atractylodis Lanceae Rhizoma (dried rhizomes of Atractylodes lancea and A. chinensis). The analysis was carried out by comparing the integral of the H-12 singlet signal of atractylon, which was well separated in the range of delta 6.95-7.05 ppm in the NMR spectrum, with the integral of a hexamethyldisilane (HMD) signal at delta 0 ppm. The atractylon contents obtained by the (1)H-NMR spectroscopy were consistent with those obtained by the conventional HPLC analysis. The present method requires neither reference compounds for calibration curves nor sample pre-purification. It also allows simultaneous determination of multiple constituents in a crude extract. Thus, it is applicable to chemical evaluation of crude drugs as a powerful alternative to various chromatographic methods.
Berberine, palmatine, and coptisine are major pharmacologically active protoberberine alkaloids in Coptidis Rhizoma, and have been used as indices for chemical evaluation of the crude drug. (1)H-NMR spectroscopy was applied to determination of purities of commercial reagents of protoberberine alkaloids. The purities of the alkaloids were calculated from the ratios of the intensities of the H-13 singlet signal at about δ 8.7 ppm of target protoberberine alkaloids to integration of a hexamethyldisilane (HMD) signal at 0 ppm. The concentration of HMD was corrected with SI traceability using potassium hydrogen phthalate of certified reference material (CRM) grade. The purity of the reagent estimated by the (1)H-NMR was, in general, lower than that claimed by the manufacturer, leading to over-estimation of the alkaloid contents of Coptidis Rhizoma when determined by HPLC. The present quantitative (1)H-NMR method was also applicable to direct determination of protoberberine alkaloid contents in Coptidis Rhizoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.