Electrical resistivity ρ, magnetic susceptibility χ, magnetization M and specific heat measurements are reported on a singlecrystalline sample of CePd5Al2, showing successive antiferromagnetic orderings at TN1=4.1 K and TN2=2.9 K. The temperature dependence of ρ shows a Kondo metal behavior with large anisotropy, ρc/ρa =3.2 at 20 K, and opening of a superzone gap along the tetragonal c-direction below TN1. Both TN1 and TN2 gradually increase with applying pressure up to 2.5 GPa. The data of χ(T ) and M (B) in the paramagnetic state were analyzed using a crystalline electric field (CEF) model. It led to a Kramers doublet ground state with wave functions consisting primarily of˛± 5 2¸, whose energy level is isolated from the excited states by 230 and 300 K. This CEF effect gives rise to the large anisotropy in the paramagnetic state. In the ordered state, the uniaxial magnetic anisotropy is manifested as Mc/Ma=20 in B=5 T and at 1.9 K, and χc/χa=25 in B=0.1 T and at 4 K. This huge uniaxial magnetic anisotropy in the antiferromagnetic states can be interpreted in terms of isotropic magnetic interaction among the Ce 3+ moments governed by the strong CEF. In powder neutron diffraction experiments, magnetic reflections were observed owing to the antiferromagnetic ordered states below TN1, however, no additional reflection was found below TN2.
Highly reliable low-cost protective coatings have been sought after for use in crucibles and susceptors for bulk and epitaxial film growth processes involving wide bandgap materials. Here, we propose a production technique for ultra-thick (50–200 μmt) tantalum carbide (TaC) protective coatings on graphite substrates, which consists of TaC slurry application and subsequent sintering processes, i.e., a wet ceramic process. Structural analysis of the sintered TaC layers indicated that they have a dense granular structure containing coarse grain with sizes of 10–50 μm. Furthermore, no cracks or pinholes penetrated through the layers, i.e., the TaC layers are highly reliable protective coatings. The analysis also indicated that no plastic deformation occurred during the production process, and the non-textured crystalline orientation of the TaC layers is the origin of their high reliability and durability. The TaC-coated graphite crucibles were tested in an aluminum nitride (AlN) sublimation growth process, which involves extremely corrosive conditions, and demonstrated their practical reliability and durability in the AlN growth process as a TaC-coated graphite. The application of the TaC-coated graphite materials to crucibles and susceptors for use in bulk AlN single crystal growth, bulk silicon carbide (SiC) single crystal growth, chemical vapor deposition of epitaxial SiC films, and metal-organic vapor phase epitaxy of group-III nitrides will lead to further improvements in crystal quality and reduced processing costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.