Purpose: This study aims to isolate potential molecular targets for diagnosis, treatment, and/or prevention of lung and esophageal carcinomas. Experimental Design: We screened for genes that were frequently overexpressed in the tumors through gene expression profile analyses of 101 lung cancers and 19 esophageal squamous cell carcinomas (ESCC) by cDNA microarray consisting of 27,648 genes or expressed sequence tags. In this process, we identified epithelial cell transforming sequence 2 (ECT2) as a candidate.Tumor tissue microarray was applied to examine the expression of ECT2 protein in 242 archived nonŝ mall-cell lung cancers (NSCLC) and 240 ESCC specimens and to investigate its prognostic value. A role of ECT2 in lung and esophageal cancer cell growth and/or survival was examined by small interfering RNA experiments. Cellular invasive activity of ECT2 in mammalian cells was examined using Matrigel assays. Results: Northern blot and immunohistochemical analyses detected expression of ECT2 only in testis among 23 normal tissues. Immunohistochemical staining showed that a high level of ECT2 expression was associated with poor prognosis for patients with NSCLC (P = 0.0004) as well as ESCC (P = 0.0088). Multivariate analysis indicated it to be an independent prognostic factor for NSCLC (P = 0.0005). Knockdown of ECT2 expression by small interfering RNAs effectively suppressed lung and esophageal cancer cell growth. In addition, induction of exogenous expression of ECT2 in mammalian cells promoted cellular invasive activity. Conclusions: ECT2 cancer-testis antigen is likely to be a prognostic biomarker in clinic and a potential therapeutic target for the development of anticancer drugs and cancer vaccines for lung and esophageal cancers.
Through genome-wide gene expression analysis of lung carcinomas, we detected in the great majority of lung cancer samples cotransactivation of cell division cycle associated 8 (CDCA8) and aurora kinase B (AURKB), which were considered to be components of the vertebrate chromosomal passenger complex. Immunohistochemical analysis of lung cancer tissue microarrays showed that overexpression of CDCA8 and AURKB was significantly associated with poor prognosis of lung cancer patients. AURKB directly phosphorylated CDCA8 at Ser 154 , Ser 219 , Ser 275 , and Thr 278 and seemed to stabilize CDCA8 protein in cancer cells. Suppression of CDCA8 expression with small interfering RNA against CDCA8 significantly suppressed the growth of lung cancer cells. In addition, functional inhibition of interaction between CDCA8 and AURKB by a cell-permeable peptide corresponding to 20-amino acid sequence of a part of CDCA8 (11R-CDCA8 261-280 ), which included two phosphorylation sites by AURKB, significantly reduced phosphorylation of CDCA8 and resulted in growth suppression of lung cancer cells. Our data imply that selective suppression of the CDCA8-AURKB pathway could be a promising therapeutic strategy for treatment of lung cancer patients. [Cancer Res 2007;67(9):4113-22]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.