Angiogenesis is the biological process of generating new capillary blood vessels. It is a fundamental component of a number of normal (reproduction and wound healing) and pathological processes (diabetic retinopathy, rheumatoid arthritis, tumor growth, and metastasis). In vitro angiogenesis assays provide a platform for evaluating the effects of pro- or antiangiogenic compounds. One of the most informative assays is the endothelial cells capillary tube formation assay performed on a biological matrix. This assay is based on quantification of the stimulatory and inhibitory effects of various agents, which is estimated through the measurement of the pseudo-tubules network length. This standard measurement is usually carried out manually by trained operators but requires time, attention, and dedication to achieve a reasonable degree of accuracy. Moreover, the screening is operator dependent. In this article, we propose an automated procedure to evaluate the pseudo-tubule network lengths. We propose a series of image analysis procedures developed using a freely available image analysis software library. More than 800 images from 12 experiments were analyzed automatically and manually, and their results were compared to improve and validate the proposed image analysis procedure. The resulting image analysis software is currently running on a dedicated server, with comparable accuracy to manual measurements. Using this new automated procedure, we are able to treat 540 images, or three complete assays per hour.
We have studied the structure of recombinant rat UBF (rrUBF), an RNA polymerase I transcription factor, by electron microscopy and image analysis of single particles contrasted with methylamine tungstate. Recombinant rat UBF appeared to be a flat, U-shaped protein with a central region of low density. In the dominant projections, 2-fold mirror symmetry was seen, consistent with the dimerization properties of this molecule, and of dimensions in agreement with the length of DNA that rat UBF protects in footprinting studies. Electron microscopy of various rrUBF-DNA complexes confirmed that our recombinant protein was fully able to bind the 45S rDNA promoter, and that it caused substantial bends in the DNA. Upon extended incubation in a droplet covered by a lipid monolayer at the liquid-air interface, rrUBF formed long filamentous arrays with a railway track appearance. This structure was interpreted to consist of overlapping rrUBF dimers 3.5 nm apart, which value would represent the thickness of the protein. Our results show rrUBF to interact with and bend the promoter DNA into a roughly 10 nm diameter superhelix. Based on all these electron microscopical results, an atomic structure was predicted by homology modelling of the HMG fingers, and connected by energy minimized intervening segments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.