Part of the Earth Sciences CommonsThis Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska -Lincoln. It has been accepted for inclusion in Papers in the Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska -Lincoln. AbstractSequence stratigraphy emphasizes facies relationships and stratal architecture within a chronological framework. Despite its wide use, sequence stratigraphy has yet to be included in any stratigraphic code or guide. This lack of standardization reflects the existence of competing approaches (or models) and confusing or even conflicting terminology. Standardization of sequence stratigraphy requires the definition of the fundamental model-independent concepts, units, bounding surfaces and workflow that outline the foundation of the method. A standardized scheme needs to be sufficiently broad to encompass all possible choices of approach, rather than being limited to a single approach or model.A sequence stratigraphic framework includes genetic units that result from the interplay of accommodation and sedimentation (i.e., forced regressive, lowstand and highstand normal regressive, and transgressive), which are bounded by "sequence stratigraphic" surfaces. Each genetic unit is defined by specific stratal stacking patterns and bounding surfaces, and consists of a tract of correlatable depositional systems (i.e., a "systems tract"). The mappability of systems tracts and sequence stratigraphic surfaces depends on depositional setting and the types of data available for analysis. It is this high degree of variability in the precise expression of sequence stratigraphic units and bounding surfaces that requires the adoption of a methodology that is sufficiently flexible that it can accommodate the range of likely expressions. The integration of outcrop, core, well-log and seismic data affords the optimal approach to the application of sequence stratigraphy. Missing insights from one set of data or another may limit the "resolution" of the sequence stratigraphic interpretation. 1 2 c a t u n e a n u e t a l . i n e a r t h -science r e v i e w s 92 (2009)
Keith W. Shanley is a consulting geologist with more than 22 years experience in exploration, development, and research. He has published numerous papers dealing with sequence stratigraphy and reservoir architecture and has served as editor of several publications. He received his B.A. degree in geology from Rice University and his M.Sc. degree and his Ph.D. in geology from the Colorado School of Mines. His current research interests include sequence stratigraphy and reservoir architecture, the integration of petrophysics, and risk analysis.
Detailed models already exist that outline physical and temporal relationships in marine and marginal marine strata. Such models are still in their infancy in alluvial deposits. Recognition of tidal and estuarine influence in fluvial strata is critical to the development of high resolution sequence stratigraphic correlations between marine and non‐marine strata. Strata that have previously been interpreted as low energy meandering river deposits contain sedimentary and biogenic structures that suggest a tidal influence. These structures include sigmoidal bedding, paired mud/silt drapes, wavy and lenticular bedding, shrinkage cracks, multiple reactivation surfaces, inclined heterolithic strata, complex compound cross‐beds, bidirectional cross‐beds, and trace fossils including Teredolites, Arenicolites and Skolithos. Although none of these structures is unique to tidal processes, the preponderance of data suggests that fluvial systems have been affected by tidal processes well inland of coeval shoreline deposits. These deposits rarely form a significant proportion of a depositional sequence; however, their occurrence allows time significant surfaces to be extended for tens or even hundreds of kilometres inland from coeval shoreline deposits. In Turonian through Campanian strata exposed in the Kaiparowits Plateau of southern Utah, tidally influenced facies are recognized within at least two distinct stratigraphic levels that were deposited during periods of relatively rapid base level rise. These strata form part of an alluvial transgressive systems tract. Landward of each of the marine transgressive maxima, tidal facies are present in fluvial channels that are completely encased in non‐marine strata at distances up to 65 km inland from a coeval palaeoshoreline. Our work suggests that such deposits may have gone unrecognized in the past, but they form a significant component of alluvial strata in many depositional sequences. Although these tidally influenced fluvial deposits may be difficult to recognize, they are temporally equivalent to marine maximum flooding surfaces and provide a chronostratigraphic correlation between alluvial and nearshore marine deposits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.