Proanthocyanidins (PAs) are secondary metabolites that contribute to the protection of the plant and also to the taste of the fruit, mainly through astringency. Persimmon (Diospyros kaki) is unique in being able to accumulate abundant PAs in the fruit flesh. Fruits of the nonastringent (NA)-type mutants lose their ability to produce PA at an early stage of fruit development, while those of the normal astringent (A) type remain rich in PA until fully ripened. The expression of many PA pathway genes was coincidentally terminated in the NA type at an early stage of fruit development. The five genes encoding the Myb transcription factor were isolated from an A-type cultivar (Kuramitsu). One of them, DkMyb4, showed an expression pattern synchronous to that of the PA pathway genes in A-and NA-type fruit flesh. The ectopic expression of DkMyb4 in kiwifruit (Actinidia deliciosa) induced PA biosynthesis but not anthocyanin biosynthesis. The suppression of DkMyb4 in persimmon calluses caused a substantial down-regulation of the PA pathway genes and PA biosynthesis. Furthermore, analysis of the DNA-binding ability of DkMyb4 showed that it directly binds to the MYBCORE cis-motif in the promoters of the some PA pathway genes. All our results indicate that DkMyb4 acts as a regulator of PA biosynthesis in persimmon and, therefore, suggest that the reduction in the DkMyb4 expression causes the NA-type-specific down-regulation of PA biosynthesis and resultant NA trait.
Persimmon fruits accumulate a large amount of proanthocyanidin (PA) during development. Fruits of pollination-constant and non-astringent (PCNA) type mutants lose their ability to produce PA at an early stage of fruit development, while fruits of the normal (non-PCNA) type remain rich in PA until fully ripened. To understand the molecular mechanism for this difference, we isolated the genes involved in PA accumulation that are differentially expressed between PCNA and non-PCNA, and confirmed their correlation with PA content and composition. The expression of structural genes of the shikimate and flavonoid biosynthetic pathways and genes encoding transferases homologous to those involved in the accumulation of phenolic compounds were downregulated coincidentally only in the PCNA type. Analysis of PA composition using the phloroglucinol method suggested that the amounts of epigallocatechin and its 3-O-gallate form were remarkably low in the PCNA type. In the PCNA type, the genes encoding flavonoid 3'5' hydroxylase (F3'5'H) and anthocyanidin reductase (ANR) for epigallocatechin biosynthesis showed remarkable downregulation, despite the continuous expression level of their competitive genes, flavonoid 3' hydroxylation (F3'H) and leucoanthocyanidin reductase (LAR). We also confirmed that the relative expression levels of F3'5'H to F3'H, and ANR to LAR, were considerably higher, and the PA composition corresponded to the seasonal expression balances in both types. These results suggest that expressions of F3'5'H and ANR are important for PA accumulation in persimmon fruit. Lastly, we tested enzymatic activity of recombinant DkANR in vitro, which is thought to be an important enzyme for PA accumulation in persimmon fruits.
To understand the molecular basis of the endodormancy of buds of perennial plants, we searched for the genes that are expressed preferentially in endodormant lateral buds of the deciduous fruit tree japanese apricot (Prunus mume Sieb. et Zucc.) using suppression subtractive hybridization with mirror orientation selection (SSH/MOS). We generated two SSH/MOS libraries containing gene pools that are expressed preferentially in endodormant buds in comparison with paradormant or ecodormant buds to search for the genes that are upregulated by endodormancy induction or down-regulated by endodormancy release, respectively. Differential screening and sequencing indicated that genes involved in gibberellin metabolism, stress resistance, cell wall modification, and signal transduction, such as transcription factors, are upregulated in endodormant buds. After a further expression survey and full-length cDNA cloning, we found that a gene similar to the SVP/AGL24-type MADS-box transcription factor showed endodormancy-associated expression. Seasonal expression analysis suggested that the SVP/AGL24 homolog in japanese apricot might be involved in endodormancy regulation of its lateral buds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.