Interleaver module is an important part of modern mobile communication system. It plays an important role in reducing bit error rate and improving transmission efficiency over fading channels. In 5G NR (5th Generation New Radio) standards, LDPC (low-density parity-check) and polar channel codes are employed for data channels and control channels, respectively. If multiple interleavers are implemented separately for them, the cost increases significantly. To address this issue, a hardware multiplexing scheme for channel interleavers based on LDPC and polar codes is proposed in this paper. Firstly, the formulas for the processes of the control channel interleaving and data channel interleaving are derived with respect to 5G NR standard. Then, the hardware implementation structures of the two interleavers are given. Subsequently, hardware reuse is proposed by sharing the similar or identical parts between the two hardware structures. Simulation results verify the correctness of our proposed scheme and demonstrate that it can realize the hardware sharing of the two kinds of channel interleavers to reduce the cost of silicon.
In 4G turbo and 5G LDPC, in order to realize a flexible, low-power, low-cost shared general-purpose block interleaving hardware module, it faces the challenges of interleaving structure integration, fewer gate circuits, parallel multistream operation, and switching between standards. Facing these challenges, after studying 3GPP TS 36.212 V15.4.0 and 3GPP TS 38.212 V15.4.0 protocols, common part of two major interleaving module standards is found. For the block interleave module in the rate matching of the 4G downlink turbo code and the bit interleave module after the rate matching of the 5G NR downlink LDPC code, this paper first designs a memory and implements the two codes interleaving on it. Then, based on the Altera Quartus prime platform and ModelSim for functional verification. Experimental results show that under SMIC 28 nm, operating frequency 50MHz, after synopsys synthesis, the memory module area is 0.17 μ m 2 , and the power consumption is 6.45 mW. Through the shared design, 32 bits parallel access, and switching between standards, the proposed scheme reduces the hardware cost, power consumption, and clock overhead, and improves the flexibility of 4G LTE and 5G NR communication downlink hardware implementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.