Escherichia coli strains causing avian colibacillosis and human neonatal meningitis, urinary tract infections, and septicemia are collectively known as extraintestinal pathogenic E. coli (ExPEC). Characterization of ExPEC strains using various typing techniques has shown that they harbor many similarities, despite their isolation from different host species, leading to the hypothesis that ExPEC may have zoonotic potential. The present study examined a subset of ExPEC strains: neonatal meningitis E. coli (NMEC) strains and avianpathogenic E. coli (APEC) strains belonging to the O18 serogroup. The study found that they were not easily differentiated on the basis of multilocus sequence typing, phylogenetic typing, or carriage of large virulence plasmids. Among the APEC strains examined, one strain was found to be an outlier, based on the results of these typing methods, and demonstrated reduced virulence in murine and avian pathogenicity models. Some of the APEC strains tested in a rat model of human neonatal meningitis were able to cause meningitis, demonstrating APEC's ability to cause disease in mammals, lending support to the hypothesis that APEC strains have zoonotic potential. In addition, some NMEC strains were able to cause avian colisepticemia, providing further support for this hypothesis. However, not all of the NMEC and APEC strains tested were able to cause disease in avian and murine hosts, despite the apparent similarities in their known virulence attributes. Thus, it appears that a subset of NMEC and APEC strains harbors zoonotic potential, while other strains do not, suggesting that unknown mechanisms underlie host specificity in some ExPEC strains.
Avian pathogenic Escherichia coli (APEC) is an economically important respiratory pathogen of chickens worldwide. Factors previously associated with the virulence of APEC include adhesins, iron-scavenging mechanisms, the production of colicin V (ColV), serum resistance, and temperature-sensitive hemagglutination, but virulence has generally been assessed by parenteral inoculation, which does not replicate the normal respiratory route of infection. A large plasmid, pVM01, is essential for virulence in APEC strain E3 in chickens after aerosol exposure. Here we establish the size of pVM01 to be approximately 160 kb and show that the putative virulence genes iss (increased serum survival) and tsh (temperature-sensitive hemagglutinin) and the aerobactin operon are on the plasmid. These genes were not clustered on pVM01 but, rather, were each located in quite distinct regions. Examination of APEC strains with defined levels of respiratory pathogenicity after aerosol exposure showed that both the aerobactin operon and iss were associated with high levels of virulence in APEC but that the possession of either gene was sufficient for intermediate levels of virulence. In constrast, the presence of tsh was not necessary for high levels of virulence. Thus, both the aerobactin operon and iss are associated with virulence in APEC after exposure by the natural route of infection. The similarities between APEC and extraintestinal E. coli infection in other species suggests that they may be useful models for definition of the role of these virulence genes and of other novel virulence genes that may be located on their virulence plasmids.
Avian pathogenic Escherichia coli (APEC) cause widespread economic losses in poultry production and are potential zoonotic pathogens. Genome sequences of 95 APEC from commercial poultry operations in four Australian states that carried the class 1 integrase gene intI1, a proxy for multiple drug resistance (MDR), were characterized. Sequence types ST117 (22/95), ST350 (10/95), ST429 and ST57 (each 9/95), ST95 (8/95) and ST973 (7/95) dominated, while 24 STs were represented by one or two strains. FII and FIB repA genes were the predominant (each 93/95, 98 %) plasmid incompatibility groups identified, but those of B/O/K/Z (25/95, 26 %) and I1 (24/95, 25 %) were also identified frequently. Virulence-associated genes (VAGs) carried by ColV and ColBM virulence plasmids, including those encoding protectins [iss (91/95, 96 %), ompT (91/95, 96 %) and traT (90/95, 95 %)], iron-acquisition systems [sitA (88/95, 93 %), etsA (87/95, 92 %), iroN (84/95, 89 %) and iucD/iutA (84/95, 89 %)] and the putative avian haemolysin hylF (91/95, 96 %), featured prominently. Notably, mobile resistance genes conferring resistance to fluoroquinolones, colistin, extended-spectrum β-lactams and carbapenems were not detected in the genomes of these 95 APEC but carriage of the sulphonamide resistance gene, sul1 (59/95, 63 %), the trimethoprim resistance gene cassettes dfrA5 (48/95, 50 %) and dfrA1 (25/95, 27 %), the tetracycline resistance determinant tet(A) (51/95, 55 %) and the ampicillin resistance genes blaTEM-1A/B/C (48/95, 52 %) was common. IS26 (77/95, 81 %), an insertion element known to capture and mobilize a wide spectrum of antimicrobial resistance genes, was also frequently identified. These studies provide a baseline snapshot of drug-resistant APEC in Australia and their role in the carriage of ColV-like virulence plasmids.
ColV plasmids of extraintestinal pathogenic Escherichia coli (ExPEC) encode a variety of fitness and virulence factors and have long been associated with septicemia and avian colibacillosis. These plasmids are found significantly more often in ExPEC, including ExPEC associated with human neonatal meningitis and avian colibacillosis, than in commensal E. coli. Here we describe pAPEC-O103-ColBM, a hybrid RepFIIA/FIB plasmid harboring components of the ColV pathogenicity island and a multidrug resistance (MDR)-encoding island. This plasmid is mobilizable and confers the ability to cause septicemia in chickens, the ability to cause bacteremia resulting in meningitis in the rat model of human disease, and the ability to resist the killing effects of multiple antimicrobial agents and human serum. The results of a sequence analysis of this and other ColV plasmids supported previous findings which indicated that these plasmid types arose from a RepFIIA/FIB plasmid backbone on multiple occasions. Comparisons of pAPEC-O103-ColBM with other sequenced ColV and ColBM plasmids indicated that there is a core repertoire of virulence genes that might contribute to the ability of some ExPEC strains to cause high-level bacteremia and meningitis in a rat model. Examination of a neonatal meningitis E. coli (NMEC) population revealed that approximately 58% of the isolates examined harbored ColV-type plasmids and that 26% of these plasmids had genetic contents similar to that of pAPEC-O103-ColBM. The linkage of the ability to confer MDR and the ability contribute to multiple forms of human and animal disease on a single plasmid presents further challenges for preventing and treating ExPEC infections.ColV plasmids have a long history in scientific literature describing their association with the virulence of extraintestinal pathogenic Escherichia coli (ExPEC) (58). The first completed ColV plasmid sequence (24) localized the genes encoding the virulence traits to a 94-kb pathogenicity-associated island (PAI). Gene prevalence studies involving the genes in this PAI confirmed the hypothesis of Waters and Crosa that there are "constant" and "variable" portions of the ColV PAI and that the constant region contains the RepFIB and aerobactin operons (58). Since those studies, several more of these plasmids have been sequenced, including a plasmid variant known as ColBM, which is closely related to ColV plasmids, containing remnants of the ColV operon and the ColV PAI in a very similar arrangement (23). ColV and ColBM plasmids have been found to occur significantly more often in ExPEC than in commensal E. coli. Furthermore, recent work suggests that some ExPEC subpathotypes, including avian pathogenic E. coli (APEC) and human neonatal meningitis E. coli (NMEC), harbor these plasmids more often than other subpathotypes (10,24,26,35,42). Interestingly, although these plasmids are very prevalent in NMEC populations, the most-studied NMEC isolates appear to lack these plasmids (31, 61). Thus, far, it has been shown that ColV and ColBM plasmids co...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.