A Sn-doped (100) β-Ga2O3 epitaxial layer was grown via metal-organic vapor phase epitaxy (MOVPE) onto a singlecrystal, Mg-doped semi-insulating (100) β-Ga2O3 substrate. Ga2O3-based Metal-Oxide-Semiconductor Field effect Transistors (MOSFETs) with a 2 µm gate length (LG), 3.4 µm source-drain spacing (LSD) and 0.6 µm gate-drain spacing (LGD) were fabricated and characterized. Devices were observed to hold a gate-to-drain voltage of 230 V in the off-state. The gate-to-drain electric field corresponds to 3.8 MV/cm, which is the highest reported for any transistor and surpassing bulk GaN and SiC theoretical limits. Further performance projections are made based on layout, process, and material optimizations to be considered in future iterations.
In this work, we demonstrate a high mobility two-dimensional electron gas (2DEG) formed at the β-(AlxGa1-x)2O3/Ga2O3 interface through modulation doping. Shubnikov-de Haas (SdH) oscillations were observed in the modulation-doped β-(AlxGa1-x)2O3/Ga2O3 structure, indicating a high-quality electron channel formed at the heterojunction interface. The formation of the 2DEG channel was further confirmed by the weak temperature dependence of the carrier density, and the peak low temperature mobility was found to be 2790 cm2/Vs, which is significantly higher than that achieved in bulk-doped Beta-phase Gallium Oxide (β-Ga2O3). The observed SdH oscillations allowed for the extraction of the electron effective mass in the (010) plane to be 0.313 ± 0.015 m0 and the quantum scattering time to be 0.33 ps at 3.5 K. The demonstrated modulation-doped β-(AlxGa1-x)2O3/Ga2O3 structure lays the foundation for future exploration of quantum physical phenomena and semiconductor device technologies based on the β-Ga2O3 material system.
Gallium Oxide has undergone rapid technological maturation over the last decade, pushing it to the forefront of ultra-wide band gap semiconductor technologies. Maximizing the potential for a new semiconductor system requires a concerted effort by the community to address technical barriers which limit performance. Due to the favorable intrinsic material properties of gallium oxide, namely, critical field strength, widely tunable conductivity, mobility, and melt-based bulk growth, the major targeted application space is power electronics where high performance is expected at low cost. This Roadmap presents the current state-of-the-art and future challenges in 15 different topics identified by a large number of people active within the gallium oxide research community. Addressing these challenges will enhance the state-of-the-art device performance and allow us to design efficient, high-power, commercially scalable microelectronic systems using the newest semiconductor platform.
We have studied the properties of Si, Ge shallow donors and Fe, Mg deep acceptors in β-Ga2O3 through temperature dependent van der Pauw and Hall effect measurements of samples grown by a variety of methods, including edge-defined film-fed (EFG), Czochralski (CZ), molecular beam epitaxy (MBE), and low pressure chemical vapor deposition (LPCVD). Through simultaneous, self-consistent fitting of the temperature dependent carrier density and mobility, we are able to accurately estimate the donor energy of Si and Ge to be 30 meV in β-Ga2O3. Additionally, we show that our measured Hall effect data are consistent with Si and Ge acting as typical shallow donors, rather than shallow DX centers. High temperature Hall effect measurement of Fe doped β-Ga2O3 indicates that the material remains weakly n-type even with the Fe doping, with an acceptor energy of 860 meV relative to the conduction band for the Fe deep acceptor. Van der Pauw measurements of Mg doped Ga2O3 indicate an activation energy of 1.1 eV, as determined from the temperature dependent conductivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.